1、在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )
A. 75 B. 90 C. 105 D. 120
2、若二次函数(a是不为0的常数)的图象与x轴交于A,B两点.下列结论:①
;②当
时,y随x的增大而增大;③无论a取任何不为0的数,该函数的图象必经过定点
;④若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是
.其中正确的结论是( )
A.①②
B.②④
C.①③
D.③④
3、若在实数范围内有意义,则x的取值范围是( )
A.x≤1 B.x≥1 C.x≥﹣1 D.x≤﹣1
4、某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别( )
年龄(岁) | 14 | 15 | 16 | 17 | 18 |
人数(人) | 1 | 4 | 3 | 2 | 2 |
A.15,16
B.15,15
C.15,15.5
D.16,15
5、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )
6、计算的正确结果是( )
A. B.
C.
D.
7、如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为( )
A. B.
C.
D.
8、下列各运算中,正确的运算是( )
A.;
B.;
C.;
D..
9、如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠ APB=45°,则CD长的最大值为( )
A.2
B.2
C.4
D.4
10、周末张明和李亮相约从各自的家出发去体育馆打羽毛球,张明家,李亮家和体育馆顺次在同一直线上,张明先从家里出发4分钟后来到李亮家与李亮汇合,汇合时间忽略不计,两人以张明的速度一起走了4分钟后,李亮发现自己装备带错了,于是立即加速回家用了少许时间取了装备后又以加速后的速度赶往体育馆,张明仍以原速前行,结果李亮比张明提前1分钟到达体育馆.若张明与李亮两人和体育馆之间的距离y(米)与李亮出发的时间x(分钟)之间的函数图象如图所示.则以下说法错误的是( )
A.张明用了24分钟到达体育馆
B.李亮加速后的速度为250米/分钟
C.李亮回家后用了1分钟取装备
D.李亮取了装备后追上张明时距离体育馆375米
11、一组数据:3,1,3,5,3,2 的众数是_________.
12、如图,在正方形内有一点
,
,点
是
的中点,且
.连接
,则
的最小值为______.
13、已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
14、2021年3月5日李克强总理在2020年工作总结中指出,城镇新增就业11860000人,将数据11860000用科学记数法表示为_____.
15、如图为二次函数y=ax2+bx+c的图象,给出下列说法:其中正确的说法有__. ①ab>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,随x值的增大而增大.
16、如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上,AB与x轴交于点E,BE:AE=1:2.若点B的坐标为(-2,1),则k的值为________.
17、图,四边形ABCD为矩形,AC为对角线,过点D作于点E.
(1)尺规作图:过点B作AC的垂线BF,垂足为F点.(保留作图痕迹不写作法)
(2)在(1)的条件下,已知,求BF的长.
18、计算: .
19、如图,点在双曲线上,
垂直
轴,垂足为
,点
在
上,
平行于
轴交双曲线于点
,直线
与
轴交于点
,已知
,点
的坐标为
.
(1)求反比例函数和一次函数的表达式;
(2)直接写出反比例函数值大于一次函数值时自变量的值范围.
20、如图,直线与函数
的图象交于点
.
(1)求的值;
(2)过点作
轴的平行线
,直线
与直线
交于点
,与函数
的图象交于点
,与
轴交于点
.
①若点是线段
的中点时,则点
的坐标是______,
的值是______;(直接写答案)
②当时,直接写出
的取值范围.
21、请阅读下列材料:
问题:如图(1),一圆柱的高为5dm,底面半径为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的AC.如下图(2)所示:
设路线1的长度为,则
,
路线2:高线AB + 底面直径BC.如上图(1)所示:
设路线2的长度为,则
,
∵,
∴
∴,
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm,高AB为5dm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:___________________;
路线2:__________
∵
,
∴
(填>或<) 所以应选择路线_________(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.
22、关于 x 的一元二次方程mx2 2x1 0 有两个不相等的实数根.
(1)求 m 的取值范围;
(2)若方程的两个根都是有理数,写出一个满足条件的 m 的值,并求出此时方程的根.
23、如图,四边形是矩形,点
是对角线
上一动点(不与
、
重合),连接
,过点
作
,交射线
于点
,已知
,
.设
的长为
.
(1) ;当
时,
;
(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;
②连接,设
的面积为
,求
的最小值.
(3)当是等腰三角形时.请求出
的值;
24、先化简再求值:;其中
.