1、下列运算正确的是
A. B.
C.
D.
2、如图,在边长为4的正方形ABCD中,以点A为圆心,以AC为半径画弧,交AD延长线上于点E.则图中阴影部分的面积是( ).
A. B.
C.
D.
3、如图,△ABC三个顶点A(-3,5),B(-3,0),C(2,0),将△ABC绕点B顺时针旋转使A落在y轴上,与此同时顶点C恰好落在的图象上,则k的值为( )
A. -2 B. -3 C. -4 D. -5
4、已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是( )
A. k≥3 B. k<3 C. k≤3且k≠2 D. k<2
5、已知关于x的方程的一根为
,则方程的另一根是( )
A.
B.
C.
D.
6、将二次函数的图像向上平移2个单位后得到的新抛物线的表达式为( )
A.
B.
C.
D.
7、下列说法中,正确的是( )
A.随机事件的发生具有偶然性,即使反复试验也没有规律可循
B.随机事件的发生具有规律性,第一次试验往往代表最后结果
C.试验的次数越少,频率的分布越集中,逐渐稳定在一个数附近
D.试验的次数越多,频率的分布越集中,逐渐稳定在一个数附近
8、如图,嘉琪从点A出发,沿正东方向前进5m后向左转30°,再前进5m后又向左转30°,这样一直走下去.以下说法错误的是( )
A.第二次左转后行走的方向是北偏东30°
B.第六次左转后行走的方向是正西方向
C.第八次左转后行走的方向是南偏西60°
D.嘉琪第一次回到点A时,一共走了60m
9、如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是( )
A.3
B.4
C.5
D.6
10、如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
11、如图,正方形中,点
是
的中点,点
是
上一点,分别以
、
为对称轴,折叠
、
,使得
和
与
重合,连接
交
于点
,连接
.
(1)______;
(2)______.
12、利用计算器求值时,依次按下 ,把显示结果输入下图的程序中,则输出的结果为_____
13、当直线经过第一、三、四象限时,则k的取值范围是_____.
14、如图,已知一次函数和反比例函数
的图象相交于
,
两点,则不等式
的解集为__.
15、如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.
16、如果一条弧长等于,它的半径是
,那么这条弧所对的圆心角度数为________,圆心角增加
时,这条弧长________.
17、如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,,点O是边BC上的动点,以OB为半径的
与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.
(1)当点E为边AB的中点时,求DF的长;
(2)分别联结AN、MD,当AN//MD时,求MN的长;
(3)将绕着点M旋转180°得到
,如果以点N为圆心的
与
都内切,求
的半径长.
18、学校举办篮球比赛,运动员小明跳起投篮,已知球出手时离地面2.4米,与篮圈中心的水平距离为7米,当球出手的水平距离4米时到达最大高度(M点)4米,设篮球运行轨迹为抛物线,篮圈中心距地面3.1米.以地面为x轴,经过最高点(M点)与地面垂直的直线为y轴建立如图所示的平面直角坐标系.
(1)请根据图中信息,求出篮球运行轨迹的抛物线解析式;
(2)请问运动员小明的这次跳起投篮能否投中?
(3)此时,对方队员乙上前拦截盖帽,且队员乙最大摸高3.2米,若队员乙盖帽失败,则他距运动员小明至少多远?(,结果精确到0.1)(说明:在球出手后,未达到最高点时,被防守队员拦截下来,称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规,判进攻方得2分.)
19、目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行步与小刚步行
步消耗的能量相同,若每消耗
千卡能量小琼行走的步数比小刚多
步,求小刚每消耗
千卡能量需要行走多少步?
20、如图,AB是⊙O的直径,AC、BC是⊙O的弦,∠ACB的平分线交⊙O于D,连接AD、BD,已知AB=6,BC=2.
(1)求AD的长度和四边形ACBD的面积;
(2)证明:2AD2=AC2+BC2.
21、如图,MN表示A市至B市的一段高速公路设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区?
22、矩形ABCO,O(0,0),C(0.3),A(a.0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO,得到矩形AFED.
(1)如图1,当点D落在边BC上时,求BD的长;
(2)如图2,当a=3时,矩形AFEO的对角线A任交矩形ABCO的边BC于点G,连结CE.若△CGE是等腰三角形,求直线BE的解析式.
(3)如图3,当a=4时,矩形ABCD的对称中心为点M,△MED的面积为s,求s的取值范围.
23、如图,∠MAN=90°,,
分别为射线
,
上的两个动点,将线段
绕点
逆时针旋转
到
,连接
交
于点
.
(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;
(2)写出一个∠ACB的度数,使得,并证明.
24、问题背景
折纸是一种将纸张折成各种不同形状的艺术活动,折纸大约起源于公元1世纪或者2世纪时的中国,6世纪时传入日本,再经由日本传到全世界,折纸与自然科学结合在一起,不仅成为建筑学院的教具,还发展出了折纸几何学,成为现代几何学的一个分支.今天折纸被应用于世界各地,其中比较著名的是日本筑波大学的芳贺和夫发现的折纸几何三定理,它已成为折纸几何学的基本定理.
芳贺折纸第一定理的操作过程及内容如下:
第一步:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;
第二步:将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至的位置,得到折痕MN,
与AB交于点P.
则点P为AB的三等分点,即.
问题解决
如图1,若正方形ABCD的边长是2.
(1)CM的长为______;
(2)请通过计算AP的长度,说明点P是AB的三等分点.
类比探究
(3)将长方形纸片按问题背景中的操作过程进行折叠,如图2,若折出的点P也为AB的三等分点,请直接写出
的值.