1、的值是( )
A. B.
C.
D.
2、设是等差数列,且
,
,则
( )
A.13 B.23 C.27 D.30
3、 现有A1,A2,....A5,这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计A1,A2,A3,A4这4个球队已经赛过的场数分别为: A1队4场,A2队3场,A3队2场,A4队1场,则A5队比赛过的场数为( )
A. 1 B. 2 C. 3 D. 4
4、袋中装有3个白球,4个黑球,从中任取3个球,则
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是互斥事件但不是对立事件的为( )
A.② B.① C.③ D.④
5、已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为( )
A.f(x)=sin(x)﹣1 B.f(x)=2sin(x
)﹣1
C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x
)+1
6、已知等差数列的前
项和为
,若
且
三点共线(该直线不过原点
),则
A.
B.
C.
D.
7、直线与
的距离为( )
A. B.
C.
D.
8、已知函数f(x)的定义域为R,对任意<
,有
>-1,且f(1)=1,下列命题正确的是( )
A. 是单调递减函数
B. 是单调递增函数
C. 不等式的解集为
D. 不等式的解集为
9、在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,若,则
的值为( )
A. 6 B. 4 C. 3 D. 2
10、在下列函数中,最小正周期为的偶函数为 ( )
A. B.
C. D.
11、若为角
终边上一点,则
( )
A.- B.
C.
D.-
12、《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积=(弦×矢+矢×矢),弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弧的距离之差,现有一弧田,其弧田弦AB等于6米,其弧田弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为
平方米,则cos∠AOB=( )
A.
B.
C.
D.
13、若,且
,则
的值是________.
14、用半圆形纸片卷成一个圆锥筒,该圆锥筒的高为,则半圆形纸片的半径为________
15、在等差数列{an}中,若a1+a7+a13 = 6,则S13 = ______ .
16、分形几何学是数学家伯努瓦•曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图甲所示的分形规律可得如图乙所示的一个树形图:
记图乙中第行白圈的个数为
,则:(Ⅰ)
;(Ⅱ)
.
17、函数的最大值为________________.
18、水平放置的的斜二测直观图如图所示,已知
,
,则
边上的中线的实际长度为______.
19、函数的定义域是___________.
20、在Rt△ABC中,,
,则
______
21、某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.
22、已知,
,则
______.
23、在中,已知
,求证:
.
24、已知函数(其中
)的图象与x轴交于A,B两点,A,B两点间的最短距离为
,且直线
是函数
图象的一条对称轴.
(1)求的增区间;
(2)若函数在
内有且只有一个零点,求实数m的取值范围.
25、记函数,
,它们的定义域交集为
,若对于任意的
,都有
是集合
中的元素.
(1)判断,
,
是否是
中的元素?
(2)若.求它的反函数
,并判断
是否属于
.