微信扫一扫
随时随地学习
当前位置 :

2025-2026年安徽池州高三下册期末数学试卷及答案

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为(       

    A.

    B.

    C.

    D.

  • 2、已知点F是椭圆的上焦点,点P在椭圆E上,线段PF与圆相切于点QO为坐标原点,且,则椭圆E的离心率为(       

    A.

    B.

    C.

    D.

  • 3、给出下列四个说法,其中正确的是(       

    A.线段在平面内,则直线不在平面内;

    B.三条平行直线共面;

    C.两平面有一个公共点,则一定有无数个公共点;

    D.空间三点确定一个平面.

  • 4、魏晋时期,数学家刘徽首创割圆术,他在《九章算注》方田章圆田术中指出:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数中的“…”代表无限次重复,设,则可利用方程求得x,类似地可得正数等于(       

    A.3

    B.5

    C.7

    D.9

  • 5、,其中为虚数单位,则  

    A. B. C. D.

  • 6、已知平面α,β和直线m,直线m不在平面α,β内,若α⊥β,则“m∥β”是“m⊥α”的

    A.充分而不必要条件

    B.必要而不充分条件

    C.充要条件

    D.既不充分也不必要条件

  • 7、执行如图所示的程序框图,则输出的n的值是   (  )

    A. 1   B. 2

    C. 3   D. 4

     

  • 8、的圆心为(  )

    A. B. C. D.

  • 9、参数方程为参数)对应的普通方程为(  

    A. B.

    C. D.

  • 10、在区间上随机地取一个数,则事件“”发生的概率为(   )

    A. B. C. D.

  • 11、某中学采用系统抽样方法,从该校高一年级全体400名学生中抽25名学生做牙齿健康检查,现将400名学生从1400进行编号,求得间隔数,即每16人抽取一个人,在中随机抽取一个数,如果抽到的是7,则从16个数中应取的数是(  

    A.40 B.39 C.38 D.37

  • 12、  

    A. B. C. D.

  • 13、若椭圆与双曲线有相同的焦点,则实数的值为( )

    A.3

    B.6

    C.12

    D.15

  • 14、在—次实验中,同时抛掷枚均匀的硬币次,设枚硬币正好出现 枚正面向上, 枚反面向上的次数为,则的方差是

    A.

    B.

    C.

    D.

  • 15、已知函数的部分图象如图所示,则函数的表达式是

    A.

    B.

    C.

    D.

二、填空题 (共10题,共 50分)
  • 16、参数方程(为参数)化成普通方程为___________.

  • 17、投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为_______。(用分数表示)

  • 18、二项式的展开式中,常数项为__________________.

  • 19、在二项式的展开式中,常数项是,则a的值为________.

  • 20、4个不同的球放入3个不同的盒子中,每盒至少1个球,则共有________种不同的放法

  • 21、为正实数,为虚数单位,,则______.

  • 22、直线分别与直线和曲线相交于点AB,则的最小值为________.

  • 23、命题“”的否定为______

  • 24、设函数,若对任意的,存在,使得,则实数的取值范围是______________.

  • 25、若函数在点处的切线方程为,则的最小值为__________.

三、解答题 (共5题,共 25分)
  • 26、如图,五面体中,平面平面,而是直角梯形,等腰三角形,且//.

    (Ⅰ)求证:四边形为平行四边形;

    (Ⅱ)求二面角的平面角的余弦值.

  • 27、已知函数

    1)求的单调递增区间;

    2)若,求的值.

  • 28、已知中,角所对的边分别为,且

    (1)求角C的大小;

    (2)求的取值范围.

  • 29、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

     

    喜爱打篮球

    不喜爱打篮球

    合计

    男生

     

    5

     

    女生

    10

     

     

    合计

     

     

    50

    已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

    (1)请将上面的列联表补充完整;

    (2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.

    参考公式:独立性检测中,随机变量

    其中为样本容量

    0.10

    0.05

    0.025

    0.010

    0.005

    0.001

    2.706

    3.841

    5.024

    6.635

    7.879

    10.828

     

  • 30、设等比数列的前项和为,已知,且成等差数列,

    1)求数列的通项公式;

    2,求数列的前

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞