1、为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( )
A.2500(1+2x)=12000 B.2500+2500(1+x)+2500(1+2x)=12000
C.2500(1+x)2=1200 D.2500+2500(1+x)+2500(1+x)2=12000
2、已知点在经过原点的一条直线l上,且
,则
的值为( )
A.
B.
C.0
D.
3、若-个圆锥的侧面展开图是半径为l0cm,圆心角为120°的扇形,则该圆锥的底面半径是( )
A.cm
B.cm
C.cm
D.cm
4、如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为( )
A. B.
C.
D.
5、如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C到AB的距离是( )
A. B.
C.3 D.2
6、.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是 ( )
A. 两竿都垂直于地面. B. 两竿平行斜插在地上.
C. 两根竿子不平行. D. 一根竿倒在地上.
7、四边形ABCD的对角线AC与BD相等且互相垂直,则顺次连接这个四边形四边的中点得到四边形是( )
A.平行四边形
B.矩形
C.菱形
D.正方形
8、《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,为
的直径,弦
于
,
寸,
寸,求直径
的长.”则
A.寸
B.寸
C.寸
D.寸
9、矩形具有而菱形不一定具有的性质是( )
A.对角线互相垂直
B.对角线相等
C.对角线互相平分
D.邻边相等
10、下列计算正确的是( )
A.
B.
C.
D.
11、如图,点C为的三等分点(
<
),∠AOB=90°,OA=3,CD⊥OB,则图中阴影部分的面积为_____.
12、如图,将矩形ABCD绕点A按逆时针方向旋转一定角度后,BC的对应边B′C交CD边于点G,如果当AB′=B′G时量得AD=7,CG=4,连接BB′、CC′,那么=_____.
13、若有意义,则
的取值范围是______.
14、计算:__________.
15、已知tanβ=sin39°19′+cos80°10′,则锐角β≈________(结果精确到1′).
16、如图,在正六边形中,连接
,
交于点
,则
________°.
17、如图,已知钝角△ABC
(1)过点A作BC边的垂线,交CB的延长线于点D;(尺规作图,保留作图痕迹,不要求写作法)
(2)当BC=AB,∠ABC=120°时,求证:AB平分∠DAC。
18、教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.
线段垂直平分线
我们已知知道线段是轴对称图形,线段的垂直一部分线是线段的对称轴,如图直线是线段
的垂直平分线,
是
上任一点,连结
、
,将线段
与直线
对称,我们发现
与
完全重合,由此都有:线段垂直平分线的性质定理,线段垂直平分线上的点到线段的距离相等.
已知:如图,,垂足为点
,
,点
是直线
上的任意一点.
求证:.
图中的两个直角三角形和
,只要证明这两个三角形全等,便可证明
(请写出完整的证明过程)
请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程,定理应用.
(1)如图②,在中,直线
、
、
分别是边
、
、
的垂直平分线.
求证:直线、
、
交于点.
(2)如图③,在中,
,边
的垂直平分线交
于点
,边
的垂直平分线交
于点
,若
,
,则
的长为_______.
19、为了理解面积一定的矩形中,相邻两边的关系,小华画出面积为16的一些矩形,若记矩形一边长为x,另一边长为y,把x,y列表如下:
x | ... | 1 | 2 | 3 | 4 | 8 | 16 | ... |
y | ... | 16 | 8 | m | 4 | 2 | 1 | ... |
(1)根据表中的数据在给定的平面直角坐标系中描点,并画出y与x的函数图象;
(2)写出y关于x的函数解析式,并求出m;
(3)在此条件下,若矩形的周长不大于20,直接写出同时满足这两个条件的边长x的取值范围 .
20、某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,请问A、B两种商品打折前各多少钱?打了多少折?
21、已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是x1,x2,求代数式+
-
的值.
22、为了增强学生的疫情防控意识,响应“停课不停学”号召,某校组织了一次“疫情防控知识”专题网上学习,并进行了一次全校2500名学生都参加的网上测试.阅卷后,教务处随机抽取了100份答卷进行分析统计,发现考试成绩(分)的最低分为51分,最高分为满分100分,并绘制了如下不完整的统计图表.请根据图表提供的信息,解答下列问题:
分数段(分) | 频数(人) | 频率 |
0.1 | ||
18 | 0.18 | |
35 | 0.35 | |
12 | 0.12 | |
合计 | 100 | 1 |
(1)填空:________,
________,
________;
(2)将频数分布直方图补充完整;
(3)该校对成绩为的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为
,请你估算全校获得二等奖的学生人数;
(4)结合调查的情况,为了提高疫情防控意识,请你给学校提一条合理性建议.
23、“巴中回风古亭”走红网络,成为巴中网红打卡地!网红小白用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从处测得该建筑物顶端
的俯角为24°,继续向该建筑物方向水平飞行15米到达
处,测得顶端
的俯角为45°,已知无人机的飞行高度为50米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:
,
,
)
24、“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)若该学校有2000名家长,请根据该统计结果估算表示“基本赞成”的家长有多少人?