微信扫一扫
随时随地学习
当前位置 :

2025-2026学年台湾台南高三(下)期末试卷数学

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、下图是某几何体的三视图,该几何体的体积为(  

    A. B. C. D.

  • 2、函数的部分图像如图所示,为了得到的图像,只需将函数的图像(  

    A.向左平移个单位长度 B.向左平移个单位长度

    C.向右平移个单位长度 D.向右平移个单位长度

  • 3、在棱长为4的正方体中,点M的中点,过点D作平面a使,则平面a截正方体所得截面的面积为(       

    A.

    B.

    C.

    D.

  • 4、设函数,若存在唯一的整数,使得,则的取值范围是(   )

    A.   B.   C.   D.

     

  • 5、人教版必修第一册第92页上“探究与发现”的学习内容是“探究函数的图象与性质”,经探究它的图象实际上是双曲线.现将函数的图象绕原点顺时针旋转得到焦点位于轴上的双曲线,则该双曲线的离心率是(       

    A.

    B.

    C.

    D.

  • 6、已知双曲线)的离心率为,则的值为( )

    A.   B.   C.   D.

     

  • 7、函数的大致图象为( )

    A.

    B.

    C.

    D.

  • 8、执行如图所示的程序框图,如果输入的是,输出的结果是7,则判断框中的“”应填入(  

    A.     B.     C.     D.

  • 9、要得到的图象,只需把的图象(  

    A.向左平移个单位 B.向右平移个单位

    C.向左平移个单位 D.向右平移个单位

  • 10、已知为等比数列的前项和,,则       ).

    A.

    B.255

    C.85

    D.

  • 11、若集合,则       

    A.

    B.

    C.

    D.

  • 12、已知,则

    A.

    B.

    C.

    D.

  • 13、各项均为正数的等比数列{}满足,则=(       

    A.2

    B.4

    C.6

    D.8

  • 14、已知实数x0是函数的一个零点,实数x1x2x3满足x1x2x30,且fx1fx2fx3)>0,则(  

    A.x0x1 B.x0x1 C.x0x3 D.x0x3

  • 15、中国古代儒家要求学生掌握六种基本才能:礼数,某校国学社团周末开展“六艺”课程讲座活动,每天连排六节,每艺一节,排课有如下要求:“礼”和“数”不能相邻,“射”和“乐”必须相邻,则“六艺”课程讲座不同的排课顺序共有(       

    A.24种

    B.72种

    C.96种

    D.144种

  • 16、已知定义在上的奇函数,满足,当时,,若函数,在区间上有10个零点,则的取值范围是(        

    A.

    B.

    C.

    D.

  • 17、函数的图象大致为(       

    A.

    B.

    C.

    D.

  • 18、抛物线的准线与圆相交于AB两点,则       ).

    A.2

    B.

    C.4

    D.

  • 19、已知抛物线,直线与抛物线交于两点,点为平面内一点,且满足到直线的最大值为(       

    A.

    B.

    C.

    D.

  • 20、满足约束条件,则的整数解的个数为( )

    A.

    B.

    C.

    D.

二、填空题 (共6题,共 30分)
  • 21、已知,直线与曲线和直线分别交于两点,若恒成立,则实数的取值范围为______

  • 22、已知向量的夹角为,则___________

  • 23、已知实数满足,则的最大值为___________.

  • 24、函数的值域为

  • 25、中,内角所对的边分别是 A=60°,则__________ 的面积S=__________

     

  • 26、若矩阵满足:,则这样的互不相等的矩阵共有(  

    A.2 B.6 C.8 D.10

三、解答题 (共6题,共 30分)
  • 27、在直角坐标系xOy中,曲线C的参数方程为为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为

    (1)写出的直角坐标方程;

    (2)已知点,若lC交于AB两点,且,求m的值.

  • 28、已知数列的首项,且,记

    1)求数列的通项公式;

    2)已知数列满足是数列的前项和,证明:

  • 29、中,角ABC的对边分别为abc,且

    1)求的值;

    2)若,且,求的值.

  • 30、已知函数.

    (1)求在点处的切线方程;

    (2)已知关于x的方程存在两根,且,证明:.

  • 31、如图所示,椭圆E的中心为坐标原点,焦点轴上,且在抛物线的准线上,点是椭圆E上的一个动点, 面积的最大值为.

    (Ⅰ)求椭圆E的方程;

    (Ⅱ)过焦点作两条平行直线分别交椭圆E于四个点.

    ①试判断四边形能否是菱形,并说明理由;

    ②求四边形面积的最大值.

     

     

  • 32、某生物公司将A型病毒疫苗用100只小白鼠进行科研和临床试验,得到统计数据如表:

     

    未感染病毒

    感染病毒

    总计

    未注射

    10

    x

    A

    注射

    40

    y

    B

    总计

    50

    50

    100

    现从所有试验的小白鼠中任取一只,取得注射疫苗小白鼠的概率为

    (1)能否有99.9%的把握认为注射此型号疫苗有效?

    (2)现从感染病毒的小白鼠中任取3只进行病理分析,记已注射疫苗的小白鼠只数为ξ,求ξ的分布列和数学期望.

    附:

    PK2k0

    0.10

    0.010

    0.001

    k0

    2.706

    6.635

    10.828

查看答案
下载试卷
得分 160
题数 32

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞