1、边长为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为( )
A. 140 B. 70 C. 35 D. 24
2、如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )
A.三条边的垂直平分线的交点
B.三个角的角平分线的交点
C.三角形三条高的交点
D.三角形三条中线的交点
3、下列语句正确的是( )
A.一条线段的黄金分割点有且只有一个
B.三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到中点距离的两倍
C.两边对应成比例且有一角对应相等的两个三角形相似
D.相似三角形所有对应线段(对应角平分线、对应中线、对应高)的比等于相似比,面积比是相似比的平方
4、按照如图的程序计算:如果输入的值是3,则输出结果为( ).
A.156 B.160 C.164 D.168
5、计算,则x等于( )
A.10 B.4 C.8 D.9
6、如图,已知直线a//b//c,直线m分别交直线a,b,c于点A,B,C;直线n分别交直线a,b,c于点D,E,F.若,则
=( )
A.
B.
C.
D.1
7、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为( )(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
A. 8.1米 B. 17.2米 C. 19.7米 D. 25.5米
8、下列图形:①等边三角形;②菱形;③平行四边形;④矩形中,是中心对称图形的有( )
A.①②③④
B.①③④
C.②③④
D.③④
9、ABCD被分别平行于两边的四条线段EJ、FI、LG、KH分割成9个小平行四边形,面积分别为S1-9,已知
ALME∽
PICH∽
ABCD.若知道S1-9中的n个,就一定能算出平行四边形ABCD的面积,则n的最小值是( ).
A.2
B.3
C.4
D.6
10、 如图,P是⊙O外任意一点,PA、PB分别与⊙O相切与点A、B,OP与⊙O相交于点M.则点M是△PAB的( )
A.三条高线的交点
B.三条中线的交点
C.三个角的角平分线的交点
D.三条边的垂直平分线的交点
11、多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7相加后,不含二次项,则常数m的值是 .
12、三角形的三个内角的度数比为4∶3∶2,则最小的角的度数为____.
13、若,则代数式
的值为________.
14、已知整式x2﹣x+6的值为8,则﹣x2+x+6的值为_____.
15、某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.
16、A、B、C、D四个小城镇,它们之间(除B、C外)都有笔直的公路相连接(如图),公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A﹣B:10元,A﹣C:12.5元,A﹣D:8元,B﹣D:6元,C﹣D:4.5元,为了B、C之间交通方便,在B、C之间建成笔直的公路,请按上述标准计算出B、C之间公共汽车的票价为_____元.
17、如图,已知和
关于某直线成轴对称,你能作出这条直线吗?
18、计算:
(1)
(2)
19、计算:
(1)解方程组:
(2)计算:
20、请叙述三角形中位线定理并证明.
21、一个正方体的棱长是,则这个正方体的表面积和体积是多少?
22、如图,四边形内接于
,且
,过点
作
的切线
,与
的延长线交于点
与
交于点
.
(1)求证:四边形是平行四边形;
(2)若,求
的长.
23、如图,抛物线交
轴于
,
两点,交
轴于点
.直线
经过点
,
.
(1)求抛物线的解析式;
(2)过点的直线交直线
于点
.
①当时,过抛物线上一动点
(不与点
,
重合),作直线
的平行线交直线
于点
,若以点
,
,
,
为顶点的四边形是平行四边形,求点
的横坐标;
②连接,当直线
与直线
的夹角等于
的
倍时,请直接写出点
的坐标.
24、如图,已知,过A作
于M,交
于E,过C作
于N,交
于F,连接
、
.
(1)求证:;
(2)求证:四边形为平行四边形.