1、正比例函数y=(k+2)x,若y的值随x的值的增大而减小,则k的值可能是( )
A. 0 B. 2 C. -4 D. -2
2、若,则下列不等式中正确的是( )
A. B.
C.
D.
3、如图,小明不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能从商店配到一块与原来相同的玻璃,他带了其中两块玻璃去商店,其编号应该是( )
A.①③ B.②④ C.③④ D.①②
4、若=
,则
的取值范围是( ).
A.a>1
B.a≥1
C.a<1
D.a≤1
5、关于x的不等式2x-a≤-1的解集为x≤1,则a的值是( )
A.4
B.3
C.2
D.1
6、点A(0,2)在( )
A.第二象限
B.x轴的正半轴上
C.y轴的正半轴上
D.第四象限
7、如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )
A.85°
B.80°
C.75°
D.70°
8、下列各组数中,是勾股数的为( )
A.1,1,2 B.1.5,2,2 C.7,24,25 D.6,12,13
9、用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )
A.
B.
C.
D.或
10、式子:的最简公分母是( )
A.24x2y2xy
B.24 x2y2
C.12 x2y2
D.6 x2y2
11、若关于x的分式方程有增根,则m=______.
12、当x=________时,分式的值为零.
13、如图,在中,
的平分线AD交BC于点D,
的两边分别与AB、AC相交于M、N两点,且
,若
,则四边形AMDN的面积为___________.
14、已知实数a满足,那么a﹣
的值是_____
15、点A、B、C、D在同一平面内,从(1)AB//CD,(2)AB=CD,(3)BC//AD,(4)BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有_______种
16、一样工作甲独做5小时可完成,若甲、乙合做3小时完成,则乙单独完成工作需___小时。
17、利用解一元二次方程的方法,在实数范围内分解因式x2﹣2x﹣1=________.
18、某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为_____.
19、直线与
轴的交点坐标为__.
20、在中,
,
,将
绕点A按顺时针方向旋转得到
旋转角为
,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当
时,点P与点C之间的距离是________.
21、数学课上老师提出了如下问题:
尺规作图:作中
边上的高线
已知:.
求作:中
边上的高线
.
下面是小东设计的“作中
边上的高线”的尺规作图过程.
作法:如图,
①以点为圆心,
的长为半径作弧,以点
为圆心,
的长为半径作弧,两弧在
下方交于点
;
②连接交
于点
.
所以线段是
中
边上的高线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)小乐和小马帮助小东完成下面的证明.
小乐:证明:,
,
点
,
分别在线段
的垂直平分线上(依据1).
垂直平分线段
.
线段
是
中
边上的高线.
小乐:证明:,
,
又
(依据2)
∴线段是
中
边上的高线
上述证明过程中的“依据1”和“依据2”分别指什么?
(3)请你用不同于小东的方法完成老师提出的问题.
(4)若,
,
,则
边上的高
的长度为__________.
22、图1、图2分别是的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图1中画一个周长为8的菱形.
(2)在图2中画出周长为18,面积为16的平行四边形.
23、某小区内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化小区环境,预计花园每平方米造价为25元,小区修建这个花园需要投资多少元?
24、要在甲乙两名学生中选拔一人参加国家数学冬令营集训.经统计,两人近期的8次测试成绩分别制作成统计图、表如下.如果让你选拔,打算让谁参加?两种统计表示中,哪一种较能直观地反映出两者的差异?
25、某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
根据以上信息,整理分析数据如下:
| 平均数(分 | 中位数(分 | 众数(分 |
小学组 | 85 | 100 | |
中学组 | 85 |
(1)写出表格中,
,
的值:
,
,
.
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.