1、如图a是某公司的商标图,由外至里,第一层阴影部分是由边长为1的正ΔABC和其外接圆形成的(如图b),第二层阴影部分是由正ΔABC的内切圆和这个内切圆的内接正三角形形成的(如图c),依次类推,则第8层阴影部分的面积为( )
A. B.
C.
D.
2、如图所示,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A. 45° B. 50° C. 55° D. 60°
3、下面四个立体图形中,主视图是三角形的是( )
A. B.
C.
D.
4、如图所示,已知在三角形纸片ABC中,BC=9,AC=12,∠BCA=90°,在AC边上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )
A.7.5 B.8 C.8.5 D.9
5、如果零上记做
,那么零下
可记作( )
A.
B.
C.
D.
6、初三举办汉语言文字竞赛,(1)班初赛x人参加,决赛1人参加,满分都是10分,初赛成绩平均数、众数和中位数都是7分,决赛成绩是10分,决赛成绩计入总分后平均数变为7.5分,下列说法正确的是( )
A.;中位数一定变大
B.;众数一定不变
C.;方差一定变小
D.;中位数和众数可能都不变
7、若二次涵数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是( )
A.a>0
B.b2-4ac≥0
C.x1<x0<x2
D.a(x0-x1)(x0-x2)<0
8、2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )
A.
B.
C.
D.
9、已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+2010的值为( )
A.2008 B.2009 C.2010 D.2011
10、已知二次函数 (m为常数),它的图像与x轴的公共点个数的情况是( )
A.有两个公共点
B.有一个公共点
C.没有公共点
D.无法确定
11、如图,点为等边三角形
内一点,且
,则
的最小值为______.
12、两个相似三角形的面积比为,其中一个三角形的周长为
,则另一个三角形的周长是________
.
13、如图,、
是
的割线,
,
,
,则
________.
14、2018年春节期间,云南接待游客约2882万人,旅游收入约193亿元,其中2882万用科学记数法表示为____.
15、已知实数a是一元二次方程x2−2022x+1=0的一实数根,则代数式a2−2021a−的值为______________.
16、如图,为了测量某风景区内一座古塔CD的高度,某校数学兴趣小组的同学分别在古塔对面的高楼AB的底部B和顶部A处分别测得古塔项部C的仰角分别为45°和30°,已知高楼AB的高为24m,则古塔CD的高度为是______m(,
,结果保留一位小数).
17、如图,一次函数的图象与反比例函数
的图象交于A(1,6),B两点,
轴于点D.
轴于点C,
.
(1)求该一次函数和反比例函数的解析式;
(2)点P是DC上一点,△PAB的面积为8,求点P的坐标.
18、如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,的顶点都在格点上,仅用无刻度的直尺在网格中画图(保留作图连线痕迹),并回答问题.
(1)在的右边找格点
,连
,使
平分
.
(2)若与
交于
,直接写出
的值.
(3)找格点,连
,使
于
.
(4)在上找点
,连
,使
.
19、已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上
(I)如图①,当EP⊥BC时,①求证CE=CN;②求CN的长;
(II)请写出线段CP的长的取值范围,及当CP的长最大时MN的长。
20、如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEM=53°,且测得AD=600米,DE=500米,试求隧道BC的长.(参考数据:sin53°≈,cos53°≈
,tan53°≈
)
21、如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数表示即可)
22、一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样则纸片埋在几号区域的可能性最大?为什么?
23、某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:
(1)参加此次诗词大会预选赛的同学共有 人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ;
(3)将条形统计图补充完整;
(4)若获得一等奖的同学中有来自七年级,
来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.
24、某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了________名观众;图②中最喜爱“体育节目”的扇形圆心角度数是________.
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为),“体育节目”(记为
),“综艺节目”(记为
),“科普节目”(记为
)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“
”和“
”两位观众的概率.