微信扫一扫
随时随地学习
当前位置 :

2025-2026年海南保亭高一上册期末数学试卷带答案

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、已知,则  

    A.2 B. C.1 D.

  • 2、已知圆,圆上到直线距离为1的点有

    A4   B3   C2 D1

     

  • 3、设函数的导函数为,函数的图像如图所示,则( )

    A.的极大值为,极小值为

    B.的极大值为,极小值为

    C.的极大值为,极小值为

    D.的极大值为,极小值为

  • 4、某植物种子的每百颗的发芽颗数和温度(单位:℃)的散点图如图所示,根据散点图,在℃至℃之间下面四个回归方程类型中最适宜作为发芽颗数和温度的回归方程类型的是(       

    A.

    B.

    C.

    D.

  • 5、a>b>0c<d<0,则下列不等式中一定成立的是(   )

    A.   B.   C.   D.

  • 6、下列命题中为真命题的是(  

    A.命题“若,则”的逆命题

    B.命题“若,则”的否命题

    C.命题“若,则

    D.命题“若,则”的逆否命题

  • 7、与圆的位置关系为( )

    A.内含

    B.外离

    C.相交

    D.相切

  • 8、设集合,则       

    A.

    B.

    C.

    D.

  • 9、如图,在复平面内,复数对应的点分别是A和B,则=

    A B  C  D

     

  • 10、已知函数的图象在区间上是连续不断的,如果存在,使得成立,则称为函数上的“好点”,那么函数上的“好点”的个数为(   )

    A. 1   B. 2   C. 3   D. 4

     

  • 11、实数系的结构图为右图所示其中1、2、3三个方格中的内容分别为

    A.有理数、整数、零

    B.有理数、零、整数

    C.零、有理数、整数

    D.整数、有理数、零

  • 12、设全集,集合,则(  )

    A.

    B.

    C.

    D.

  • 13、若圆上恰有三点到直线的距离为,则的值为(       

    A.

    B.

    C.

    D.

  • 14、某班班会准备从含甲、乙的人中选取人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有

    A.

    B.

    C.

    D.

  • 15、已知集合,则       

    A.

    B.

    C.

    D.

二、填空题 (共10题,共 50分)
  • 16、已知抛物线的焦点为,直线且依次交抛物线及圆于点四点,则的最小值为__________

  • 17、平面//平面,直线,点与面夹角为的夹角为,则的夹角为____.

     

  • 18、写出与圆相切,且在轴和轴上的截距相等的一条直线的方程:__________.

  • 19、轴上的截距为且倾斜角为的直线方程为__________

  • 20、已知函数,若都有,则实数m的取值范围是____________.

  • 21、展开式中,含的项的系数是_____________

  • 22、上到直线的距离等于1的点有_______个.

     

  • 23、方程表示椭圆______条件.(从充分不必要必要不充分充要既不充分又不必要中,选出合适的填空)

  • 24、已知圆的方程为,直线恒过定点A.若一条光线从点A射出,经直线上一点反射后到达圆上的一点,则的最小值为______.

  • 25、已知,函数,若上是单调减函数,则实数的取值范围是_________________

三、解答题 (共5题,共 25分)
  • 26、已知椭圆,其长轴的两个端点分别为,点为椭圆上任意一点(除外),

    (1)设直线的斜率分别为,求的值;

    (2)若直线分别与轴交于两点,为坐标原点.试问:是否为定值?若是,求出该定值;若不是,说明理由.

  • 27、已知函数.

    (1)求的最小正周期和单调递增区间;

    (2)在锐角中,角的对边分别为,若,求面积的最大值.

  • 28、如图所示在四棱锥,底面是边长为的菱形,,点分别为棱的中点.

    (1)取中点为,求证:平面平面

    (2)若,二面角的余弦值为,求直线与平面所成的角的正弦值.

  • 29、丁4个足球队举行单循环赛,

    (1)所有各场比赛的双方,共有多少种不同的选法,并且列出所有结果:

    (2)所有冠亚军的可能结果,共有多少种,并且列出所有结果.

  • 30、如图,四棱锥的底面是直角梯形,的中点,.

    (Ⅰ)证明:⊥平面

    (Ⅱ)求二面角的大小;

    (Ⅲ)线段上是否存在一点,使得直线平面. 若存在,确定点的位置;若不存在,说明理由.

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞