1、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
2、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
3、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
4、如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角,一重为
的物体悬挂在横杆中点,则每根斜杆受到地面的( )
A.作用力为
B.作用力为
C.摩擦力为
D.摩擦力为
5、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
6、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
7、我国已成功发射的月球探测车上装有核电池提供动力。核电池是利用放射性同位素衰变放出载能粒子并将其能量转换为电能的装置。某核电池使用的核燃料为,一个静止的
发生一次α衰变生成一个新核,并放出一个γ光子。将该核反应放出的γ光子照射某金属,能放出最大动能为
的光电子。已知电子的质量为m,普朗克常量为h。则下列说法正确的是( )
A.新核的中子数为144
B.新核的比结合能小于核的比结合能
C.光电子的物质波的最大波长为
D.若不考虑γ光子的动量,α粒子的动能与新核的动能之比为117:2
8、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
9、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
10、歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为。飞机的重力为G,使飞机实现节油巡航模式的最小推力是( )
A.G
B.
C.
D.
11、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
12、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
13、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
14、下列说法正确的是( )
A.液体分子的无规则运动称为布朗运动
B.两分子间距离减小,分子间的引力和斥力都增大
C.物体做加速运动,物体内分子的动能一定增大
D.物体对外做功,物体内能一定减小
15、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
16、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
17、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
18、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
19、2020年3月20日,电影《放射性物质》在伦敦首映,该片的主角—居里夫人是放射性元素钋()的发现者。已知钋(
)发生衰变时,会产生
粒子和原子核
,并放出
射线。下列分析正确的是( )
A.原子核的质子数为82,中子数为206
B.射线具有很强的穿透能力,可用来消除有害静电
C.由粒子所组成的射线具有很强的电离能力
D.地磁场能使射线发生偏转
20、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
21、两个完全相同的物块A、B,质量均为m=0.8 kg,在同一粗糙水平面上以相同的初速度从同一位置开始运动。图中的两条直线分别表示A物块受到水平拉力F作用和B物块不受拉力作用的v-t图象,则物块A所受拉力F的大小为_____N;8 s末物块A、B之间的距离为________M
22、质量为m的质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上。已知t=0时质点处于静止状态,在图中t0、2t0、3t0和4t0的各时刻中,质点离出发点距离最大的时刻是__________;质点动能的最大值是____________。
23、如图所示,倾角的足够长斜面静止在水平地面上,质量
的物块A与质量
的物块B用细线绕过光滑定滑轮连接,物块A与定滑轮间的细线与斜面平行,用手(图中未画出)托着物块B,使其与定滑轮间的细线竖直。将物块B由静止释放,当物块A沿斜面向上运动
的距离时(物块B未落地),细线断开,已知物块A与斜面间的动摩擦因数
,斜面始终保持静止,取重力加速度大小
,细线断开时,物块A的速度大小为_______
,物块A沿斜面向上运动的时间为________s。
24、如图所示,一列简谐横波沿x轴正向传播,t=0时刻的实线波形经过Δt=0.6 s移到了虚线所在的位置,则这列波的传播速度为___m/s;经过Δt时间x=2 m处的质点运动的路程为___cm.
25、如图所示,在学校的游园活动中,某同学站在O点要将小球抛入边长为d的正方体的收纳箱中。O与收纳箱的顶点A、B在同一条直线上,且OA=d。抛出点P位于O点正上方2d处。为使小球能落入箱内,小球水平抛出初速度的最小值为_______,最大值为_______(不计空气阻力)。
26、物理实验室新进来一批由某种透明材料做成的棱镜,其横截面由一直角三角形和一半径为R的圆柱组成,如图所示。已知三角形BC边的长度为R,∠BAC=30°。现让一单色细激光束从AB边上距A点为
R的D点沿与AB边成
=45°斜向右上方的方向人射,激光束经AC反射后刚好能垂直BC边进入
圆柱区域。单色细激光束从圆弧上的E点(图中未画出)射出时的折射角γ=_____,单色细激光束在棱镜中传播的时间t=_______ (光在真空中的速度为c)。
27、太阳能电池在有光照射时,可以将光能转化为电能,在没有光照射且未储存电能时可视为一个电阻。实验小组用伏安法探究某太阳能电池视为电阻RS时的I-U特性。
(1)实验小组设计好电路后,正确操作,得到了多组电压表和电流表的示数U、I,如下表所示:
U/V | 0.0 | 1.2 | 1.6 | 2.0 | 2.4 | 2.6 | 2.8 | 3.0 |
I/mA | 0.0 | 0.0 | 0.1 | 0.4 | 0.9 | 1.8 | 3.3 | 5.1 |
①他们设计的电路图可能是图甲中的___________(选填“A”或“B”)图。
②根据表中数据作出太阳能电池RS的I-U图线如图乙所示,由I-U图线可知,随所加电压的增大,太阳能电池的电阻RS的变化趋势为___________。
(2)将___________只相同的该太阳能电池的电阻RS并联后,直接与电动势为4V,内阻为200Ω的电源组成闭合回路,可使太阳能电池的总功率最大,最大值为___________W。
28、如图所示,足够长的平行金属导轨PQ、P'Q'水平固定,处在竖直向下的匀强磁场中,其右端通过一小段圆弧形绝缘材质导轨与倾角为θ倾斜固定导轨MN、M'N'平滑相连,倾斜导轨处在垂直导轨平面的匀强磁场中,两部分磁场的磁感应强度均为B。在水平导轨靠近PP'的位置静止放置一根电阻为R、质量为m的金属棒a,在倾斜导轨上靠近MM'的位置静止锁定一根电阻也为R、质量也为m的金属棒b。已知金属棒长度和导轨间距均为L,重力加速度为g,电容器的储能公式,且金属棒与导轨接触良好,不计其他电阻,不计一切摩擦,不考虑电磁辐射,现在PP'之间用导线接一个电阻为R的定值电阻,并给金属棒a一个水平向右的初速度v0。
(1)试求金属棒a在水平导轨上向右滑动过程中,金属棒a上产生的焦耳热。
(2)若将定值电阻R换成一个电容为C的电容器,仍然在靠近PP'的位置给金属棒a一个水平向右的初速度v0,试求金属棒a在水平导轨上向右滑动过程中,金属棒a上产生的焦耳热。
(3)在第(2)问基础上,经过足够长时间,金属棒a到达绝缘材质导轨并滑离,然后以大小为v的速度从MM'滑入倾斜导轨,与此同时解除对金属棒b的锁定,金属棒b由静止开始运动,再经过时间t,金属棒a的速度大小变为v1,试求此时金属棒a、b的加速度a1、a2的大小,设整个过程中两棒没有相撞。
29、如图所示,倾角的斜面在B点与水平面平滑连接,平面与斜面的材料相同。大小相同、可看作质点的甲、乙两物块质量均为
,甲物块置于水平面上的A点,乙物块置于斜面上的C点且恰好处于静止状态。从某时刻开始,大小
的水平恒力作用在甲物块上,使其由A点向B点运动,当甲物块运动至B点时撤去水平恒力,甲物块沿斜面运动至C点与乙物块相碰,碰后两物块立即粘在一起,两物块能上升的最高点为D点,有
。不计甲物块与接触面的摩擦,不计物块通过B点时的能量损失,设最大静摩擦力等于滑动摩擦力,重力加速度
,求:
(1)最终两物块静止的位置到B点的距离与长度的比值;
(2)由于摩擦产生的内能和由于碰撞产生的内能的比值。
30、如图所示,间距为且足够长的平行金属导轨
与
,由倾斜与水平两部分平滑连接组成。倾角
的倾斜光滑导轨间有垂直导轨平面斜向上的匀强磁场,水平粗糙导轨间有竖直向上的匀强磁场,两个匀强磁场的磁感应强度均为
。质量均为
的金属棒a、b分别垂直放在倾斜和水平导轨上,a、b棒与水平粗糙导轨间的动摩擦因数均为
,现将a棒从倾斜导轨某位置由静止开始释放,并同时锁定b棒,使其保持静止。已知a棒穿过
之前已做匀速直线运动,且当a棒刚穿过
时,立即解除b棒锁定并同时给b棒施加
水平向右的恒定拉力,b棒运动
后两棒速度相等。已知a、b棒接入电路的电阻均为
,不计导轨的电阻,两棒始终与导轨保持接触良好,在运动过程中两棒不会发生碰撞,取
,
,求:
(1)金属棒a到达斜面底端时的速度
的大小;
(2)为了保证两棒不会发生碰撞,初始时金属棒b到的最小距离
;
(3)a、b两棒最终运动的速度,
大小。
31、如图所示,粗细均匀的U形玻璃管一端封闭,另一端与大气相通且足够长,玻璃管内两段水银柱封闭了两段空气柱A和B,两段空气柱的长度分别为LA=5cm,LB=15cm,下端水银面高度差h=6cm,A上端水银柱长h1=4cm,大气压强p0=76cm Hg,外界环境温度保持不变,现从右端开口处缓慢向管中加入水银,当下段水银面高度差h=0时,求:
(1)B部分气体的压强;
(2)A部分气体的长度(结果保留三位有效数字)。
32、我国的中压直流电磁弹射技术已达到世界先进水平,其实验模型如图1所示。用于推动质量的模型飞机的动子(图中未画出)固定在线圈上,彼此绝缘。动子和线圈的总质量
,线圈匝数
匝,每匝的周长
。线圈带动动子,可在水平导轨上无摩擦滑动。线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为
。开关S与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速。在
时刻,飞机达到
的速度起飞与动子脱离,此时S掷向2,与
匀定值电阻接通,同时施加回撤力F,在
至
时间内
时刻撤去F,在F和磁场力作用下,动子恰好返回初始位置停下。动子从静止开始至返回初始位置过程的
图像如图2所示。不计空气阻力和飞机起飞对动子运动速度的影响。求:
(1)时间内,回路中的电流大小;
(2)线圈的总电阻R及至
时间内的加速度大小;
(3)时间内通过回路的电荷量。