1、如图所示为速冻食品加工厂生产和包装饺子的一道工序。将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。关于饺子在水平传送带上的运动,下列说法正确的是( )
A.饺子一直做匀加速运动
B.传送带的速度越快,饺子的加速度越大
C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量
D.传送带多消耗的电能等于饺子增加的动能
2、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
3、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
4、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
5、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
6、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
7、火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )
A.轨道周长之比为2∶3
B.线速度大小之比为
C.角速度大小之比为
D.向心加速度大小之比为9∶4
8、歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为。飞机的重力为G,使飞机实现节油巡航模式的最小推力是( )
A.G
B.
C.
D.
9、下列说法正确的是( )
A.液体分子的无规则运动称为布朗运动
B.两分子间距离减小,分子间的引力和斥力都增大
C.物体做加速运动,物体内分子的动能一定增大
D.物体对外做功,物体内能一定减小
10、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
11、国家为节约电能,执行峰谷分时电价政策,引导用户错峰用电。为了解错峰用电的好处,建立如图所示的“电网仅为3户家庭供电”模型,3户各有功率P=3kW的用电器,采用两种方式用电:方式一为同时用电1小时,方式二为错开单独用电各1小时,两种方式用电时输电线路总电阻损耗的电能分别为ΔE1、ΔE2,若用户电压恒为220V,不计其它线路电阻,则( )
A.两种方式用电时,电网提供的总电能之比为1:1
B.两种方式用电时,变压器原线圈中的电流之比为1:3
C.
D.
12、如图所示,光滑水平面上有一足够长的轻质绸布C,C上静止地放有质量分别为2m、m的物块A和B,A、B与绸布间的动摩擦因数均为μ。已知A、B与C间的最大静摩擦力等于滑动摩擦力。现对A施一水平拉力F,F从0开始逐渐增大,下列说法正确的是( )
A.当F=0.5μmg时,A、B、C均保持静止不动
B.当F=2.5μmg时,A、C不会发生相对滑动
C.当F=3.5μmg时,B、C以相同加速度运动
D.只要力F足够大,A、C一定会发生相对滑动
13、如图所示,天花板上悬挂的电风扇绕竖直轴匀速转动,竖直轴的延长线与水平地板的交点为O,扇叶外侧边缘转动的半径为R,距水平地板的高度为h。若电风扇转动过程中,某时刻扇叶外侧边缘脱落一小碎片,小碎片落地点到O点的距离为L,重力加速度为g,不计空气阻力,则电风扇转动的角速度为( )
A.
B.
C.
D.
14、网课期间,有同学在家里用投影仪上课。投影仪可以吊装在墙上,如图所示。投影仪质量为m,重力加速度为g,则吊杆对投影仪的作用力( )
A.方向左斜向上
B.方向右斜向上
C.大小大于mg
D.大小等于mg
15、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
16、如图,电路中所有元件完好。当光照射光电管时,灵敏电流计指针没有偏转,其原因是( )
A.电源的电压太大
B.光照的时间太短
C.入射光的强度太强
D.入射光的频率太低
17、《流浪地球2》影片中,太空电梯高耸入云,在地表与太空间高速穿梭。太空电梯上升到某高度时,质量为2.5kg的物体重力为16N。已知地球半径为6371km,不考虑地球自转,则此时太空电梯距离地面的高度约为( )
A.1593km
B.3584km
C.7964km
D.9955km
18、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
19、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
20、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
21、在双缝干涉实验中,分布用红色和绿色的激光照射同一双缝,在双缝后的屏幕上,红光的干涉条纹间距与绿光的干涉条纹间距
相比
______
(填“>”、“<”或“=”).若实验中红光的波长为
,双缝到屏幕的距离为
,测得第一条到第6条亮条纹中心间的距离为
,则双缝之间的距离为______
.
22、分子之间有相互作用力。设分子固定不动,分子b以某一初速度从无穷远处向a运动,直至它们间的距离最小。在此过程中,a、b同的相可作用力大小的变化规律是________;相距最近时,a、b间的相互作用力是________(选填“引力”或“斥力”)。
23、如图所示电路,电源电动势为,内阻、定值电阻和滑动变阻器总阻值均为
.闭合电键,当滑片从a移到b,电流表示数将_________(选填“增大”或“减小”),当滑片滑至中点时,电流表示数为________(用题中已知量表示).
24、一列简谐横波沿x轴传播,t=0时刻的波形如图所示,此时x=3m处的质点正在向上运动,则x=2.5m处的质点向______(选填“上”或“下”)运动。当x=3m处的质点在波峰时,x=5m处的质点恰好在_______(选填“波峰”“波谷”或“平衡位置”)。
25、一列简谐横波沿x轴正方向传播,t=6s时的波形如图(a)所示。在x轴正方向,距离原点大于1倍波长、小于2倍波长的A点,其振动图像如图(b)所示(本题所涉及质点均已起振)当t=7s时,平衡位置在x=0.7m处的质点的振动速度方向向y轴__________(填“负方向”或“正方向”)。A点的平衡位置与原点的距离是在__________之间。
26、用显微镜观察悬浮在水中的花粉,追踪几粒花粉,每隔30s记下它们的位置,用折线分别依次连接这些点,如图所示.则:
①从图中可看出花粉颗粒的运动是_____(填“规则的”或“不规则的”)
②关于花粉颗粒所做的布朗运动,说法正确的是_____
A.图中的折线就是花粉颗粒的运动轨迹
B.布朗运动反映液体分子的无规则运动
C.液体温度越低,花粉颗粒越大,布朗运动越明显
D.布朗运动是由于液体分子从各个方向对花粉颗粒撞击作用的不平衡引起的
27、为探究弹力和弹簧伸长的关系,某同学把两根弹簧连接起来进行探究,如图所示:
钩码个数 | 1 | 2 | 3 | 4 |
LA/cm |
| 19.71 | 23.66 | 27.76 |
LB/cm | 29.96 | 35.76 | 41.51 | 47.36 |
(LB-LA)/cm |
| 16.05 | 17.85 | 19.60 |
在弹性限度内,将质量为50g的钩码逐个挂在弹簧下端,在表中记录下指针A、B的示数LA和LB。其中悬挂1个钩码时,指针A所指的标尺刻度如放大图所示,此时LA=____ cm。 由表中数据可得,弹簧1的劲度系数k1=____ N/m, 弹簧2的劲度系数k2=____ N/m。(已知重力加速度g=9.80 m/s2 ,结果均保留2位小数)
28、如图所示,在坐标系xOy的第I象限内,分布着场强大小为E、沿y轴负方向的匀强电场;第Ⅱ象限内,圆心为O的圆环状区域存在沿半径方向的辐向均匀电场,虚线ab为圆环外径和内径间的中心线,中心线上电场强度的大小也恒为E、方向均指向O点,ab圆弧的半径为R。离子源飘出的正离子束(初速度可忽略),经第Ⅲ象限的电场加速后从x轴上的a点进入辐向电场,并沿中心线ab做圆周运动,之后由b点进入第I象限并射到位于x轴的靶上。不计重力和离子间的相互作用,求:
(1)加速电场的电压;
(2)离子射到靶上时的位置坐标及其速率与比荷的关系。
29、如图,在x轴(水平轴)下方,沿y轴(竖直轴)方向每间隔d=0.2m就有一段间距也为d的区域P,区域P内(含边界)既存在方向竖直向上、场强E=20N/C的匀强电场,也存在方向垂直坐标平面面向里、磁感应强度B=2T的匀强磁场。现有一电荷量q=5×10-10C、质量m=1×10-9kg的带正电粒子从坐标原点O自由下落。粒子可视为质点,重力加速度大小g=10m/s2。
(1)求粒子刚到达第一个区域P时的速度大小v1和穿出该区域时速度的水平分量大小v1x;
(2)求粒子刚到达第n(n>1)个区域P时的速度大小vn和粒子穿过该区域过程中速度的水平分量的变化量大小Δvnx;
(3)到达第几个区域P时,粒子不能从该区域的下方穿出。
30、某冰雪游乐场中,用甲、乙两冰车在轨道上做碰碰车游戏,甲的质量m1=20kg,乙的质量m2=10kg。轨道由一斜面与水平面通过光滑小圆弧在B处平滑连接。甲车从斜面上的A处由静止释放,与停在水平面C处的乙车发生正碰,碰撞后乙车向前滑行18m停止动。已知A到水平面的高度H=5m,BC的距离L=32m,两车受到水平面的阻力均为其重力的0.1倍,甲车在斜面上运动时忽略阻力作用,重力加速度g取10m/s2.求:
(1)甲到达C处碰上乙前的速度大小;
(2)两车碰撞过程中的机械能损失。
31、如图所示,水平面右端放一质量m=0.1kg的小物块(可看做质点),让小物块以v0=4m/s的初速度使其水平向左运动,运动位移s=1m时将弹簧压至最短(在弹簧的弹性限度内,其劲度系数k=100N/m。),反弹回到出发点时物块的速度大小v1=2m/s,若水平面右端与一长L=3m的水平传送带平滑连接,传送带以v2=10m/s的速度顺时针匀速转动,传送带右端又与竖直面内的光滑圆形轨道的底端平滑连接,当小物块进入圆轨道时会触发闭合装置关闭圆轨道,圆轨道半径R=0.8m,不计空气阻力,g=10m/s2.求:(答案可用根号表示)
(1)为使小物块进入圆轨道后过不了圆心等高点,则传送带与物块间的动摩擦因数μ1满足的条件;
(2)小物块与水平面间的动摩擦因数μ2、弹簧具有的最大压缩量xmax;
(3)若将一个固定的长度与弹簧原长相等且右端面为与墙面平行的竖直平面的长方体替换弹簧,且右端面上方装一可看成质点的小铃铛(图上没画),且去除圆轨道触发闭合装置,物块进入圆轨道后不脱离圆轨道,小物块与长方体右端面发生弹性正碰。传送带与物块间的动摩擦因数μ=0.1,如要使铃铛响二声,给小物块向左的初速度v0满足什么条件。
32、如图所示,两个截面积都为S的圆柱形容器,右边容器高为H,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的质量为M的活塞。两容器由装有阀门的极细管道相连,容器、活塞和细管导热性良好。左、右两边容器中装有相同的理想气体,开始时阀门打开,平衡时活塞到容器底的距离为H。现将阀门关闭,在活塞上放一个质量也为M的砝码,活塞缓慢下降,直至系统达到新的平衡。已知外界温度恒定,外界大气压强为,重力加速度为g,
。
求:(1)当系统达到新的平衡时,活塞距底端的高度;
(2)当系统达到平衡后再打开阀门,活塞又缓慢下降,直到系统再次达到平衡,求左边气体通过阀门进入右边容器的质量与右边气体原有质量的比值。