1、冠状病毒的半径大约为0.000 000 05米,它的半径用科学记数法表示为( )
A.0.5米 B.5
米 C.5
米 D.5
米
2、如图,设k= (a>b>0),则有( )
A.k>2 B.1<k<2
C.<k<1 D.0<k<
3、容积为1500升的蓄水池装有一个进水管和一个出水管,单位时间内进、出水量都一定,单开进水管30分钟可把空池注满,单开出水管20分钟可把满池的水放尽.现水池内有水250升,先打开进水管10分钟后,再两管同时开放,直至把池中的水放完.这一过程中蓄水池中的蓄水量y(升)随时间x(分)变化的图象是( )
A.
B.
C.
D.
4、下列图形是平行投影的是( )
A. B.
C.
D.
5、关于反比例函数图象,下列说法正确的是( )
A.必经过点 B.两个分支分布在第一、三象限
C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称
6、下列事件中,属于必然事件的是( )
A.掷一枚硬币,正面朝上. B.抛出的篮球会下落.
C.任意的三条线段可以组成三角形 D.同位角相等
7、-6的倒数是( ).
A. B.
C.
D.
8、下列运算正确的是( )
A.3x2+4x2=7x4 B.2x3•3x3=6x3
C.x6÷x3=x2 D.(x2)4=x8
9、如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是( )
A. 2﹣2 B. 2
C.
﹣1 D. 4
10、的值等于( ).
A.
B.1
C.
D.
11、若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是__________.
12、如果,
,则
________.
13、如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF的长度为_____.
14、如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=______°.
15、如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.
(Ⅰ)线段AB的长为_____.
(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP=,并简要说明你的作图方法(不要求证明).___________________________________.
16、如图,的两条弦
、
相交于
,如果
,
,
,那么
________.
17、小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是______.
(2)如果小明将“求助”留在第二题使用,那么小明顺利通关的概率是______.
18、如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点,且∠ODB=60°.
(1)求⊙C的半径;
(2)求圆心C的坐标.
19、如图,在平面直角坐标系中,顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB=120°.
(1)求该抛物线的表达式;
(2)联结AM,求S△AOM;
(3)将抛物线C1向上平移得到抛物线C2,抛物线C2与x轴分别交于点E、F(点E在点F的左侧),如果△MBF与△AOM相似,求所有符合条件的抛物线C2的表达式.
20、如图,在矩形ABCD中,AB=5,AD=4,E为AD边上一动点(不与点A重合),AF⊥BE,垂足为F,GF⊥CF,交AB于点G,连接EG.设AE=x,S△BEG=y.
(1)证明:△AFG∽△BFC;
(2)求y与x的函数关系式,并求出y的最大值;
(3)若△BFC为等腰三角形,请直接写出x的值.
21、甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量(件),
(件)与加工件的时间
(天)的函数图象如图所示,
(1)乙工厂每天加工零件的数为_____件;
(2)甲工厂维修设备的时间是多少天?
(3)求甲维修设备后加工零件的数量(件)与加工零件的时间
(天)的函数关系式,并写出自变量
的取值范围
22、如图,已知菱形ABCD的对角线相交于点,延长AB至点E,使
,连结CE.
(1)求证:;
(2)若,求
的度数.
23、 深圳某校初三为提高学生长跑成绩,把每天的课间操改为“环校跑”,现测得初三(1)班全体同学的成绩如图,请你根据提供的信息,解答下列问题:
(1)初三(1)班共有______人;
(2)在扇形统计图中,“良好”所在扇形圆心角等于______度;
(3)请你补充条形统计图;
(4)若该年级共有650名学生,请你估计该年级喜欢“不及格”的学生人数约是______人.
24、已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.