1、一次函数y=3x﹣2的图象上有两点A(﹣1,y1),B(﹣2,y2),则y1与y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定
2、在Rt△ABC中,∠C=90°,a=1,b= ,则∠A=( )
A. 30° B. 45° C. 60° D. 90°
3、2020年1月24日,国家病原微生物资源库发布了由中国疾病预防控制中心病毒病预防控制所成功分离的我国第一株病毒(新型冠状病毒武汉株01)毒种信息和电镜照片.电镜显示病毒直径约为100纳米.已知1纳米毫米,下述关于冠状病毒直径的科学计数法正确的是( )
A.米
B.米
C.米
D.米
4、如图,直线l与直线a,b相交,且a∥b,∠1=60°,那么∠2的度数为( )
A. 140° B. 120° C. 60° D. 30°
5、如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为( )
A. B.
C.
D.
6、计算结果与4的相反数相同的是()
A.-(-4) B.-(-2)2 C.4-1 D.|-4|
7、在0,2,﹣3,﹣这四个数中,最小的数是( )
A.0
B.2
C.﹣3
D.﹣
8、已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是( )
A.3:2
B.2:3
C.4:9
D.9:4
9、当时,关于
的一元二次方程
的根的情况为( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
10、图形结合法既可以由数解决形的问题,也可以由形解决数的问题.二次函数与其图象,由图象可以看出函数的开口方向、对称轴以及y随x的变化规律,也可以看出x取某个值时,y的取值情况.已知二次函数y=ax²+bx+1的图象如图所示,有以下结论;①ab>0;②a-b>0;③a+b +1<0;④9a-3b+1>0.其中所有正确结论的序号是( )
A.①②
B.③④
C.①②③
D.②③④
11、如图,AB=4,射线BQ和AB互相垂直,点D是AB上的一个动点,点E在射线BQ上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BQ于点C.设BE=x,BC=y,则y关于x的函数解析式为______________.
12、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
质量(千克) | 14 | 21 | 27 | 17 | 18 | 20 | 19 | 23 | 19 | 22 |
根据调查,市场上今年樱桃的批发价格为每千克15元,用所学的统计知识估计今年此果园樱桃按批发价格销售所得的总收入约为________元.
13、若抛物线的顶点在第一象限,则m的取值范围为______.
14、(cos 30°+sin 45°)(sin 60°-cos 45°)=____.
15、如图,已知∠MAN=30°,点B在边AM上,且AB=4,点P从点A出发沿射线AN方向运动,在边AN上取点C(点C在点P右侧),连结BP,BC.设PC=m,当△BPC成为等腰三角形的个数恰好有3个时,m的值为_____.
16、若反比例函数y=,当x
a或x
a时,函数值y范围内的整数有k个;当x
a+1或x
-a-1时,函数值y范围内的整数有k-2个,则正整数a=______.
17、为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;
(2)求出最低费用,并说明费用最低时的调配方案.
18、如图,在由边长为 1 个单位长度的小正方形组成的网格中,建立平面直角坐标系 A(1,7), B(6,3), C(2,3) .
(1)将ABC 绕格点 P(1,1) 顺时针旋转90,得到△ ABC, 画出△ ABC,并写出下列各点坐标: A( , ), B( , ), C( , );
(2)找格点 M ,连CM ,使CM AB ,则点 M 的坐标为( );
(3)找格点 N ,连 BN ,使 BN AC ,则点 N 的坐标为( ).
19、衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5 m的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4 m,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1 m)
20、(本题8分)如图是由边长都是1的小正方形组成的网格.请以图中线段BC为边,作△PBC,使P在格点上,并满足:
(1)图甲中的△PBC是直角三角形,且面积是△ABC面积2倍;
(2)图乙中的△PBC是等腰非直角三角形.
21、如图,在中,
,
是
的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与
交于点F,延长BA到点G,使得
,连接FG.
备用图
(1)求证:FG是的切线;
(2)若的半径为4.
①当,求AD的长度;
②当是直角三角形时,求
的面积.
22、某校为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图(均不完整).
根据以上信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生;
(2)补全条形统计图;
(3)如果全校有1200名学生,学习准备的400个自行车停车位是否够用?
23、△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),点F,G,P分别是DE,BC,CD的中点,连接PF,PG.
(1)如图①,α=90°,点D在AB上,则∠FPG= °;
(2)如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;
(3)连接FG,若AB=5,AD=2,固定△ABC,将△ADE绕点A旋转,当PF的长最大时,FG的长为 (用含α的式子表示).
24、我校团委举办了一次“中国梦·我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀. 这次大赛中甲、乙两组学生成绩分布的条形统计图如下.
(1)补充完成下列的成绩统计分析表:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲 | 6.7 |
| 3.41 | 90% | 20% |
乙 |
| 7.5 | 1.69 | 80% | 10% |
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏下!”观察上表,请说明小明是哪一组学生,并说明理由;
(3)如果学校准备推荐其中一个组参加县级比赛,你推荐哪一组参加?请你从两个不同的角度说明推荐理由.