1、某区以“整治环境卫生”为抓手,逐年增加环保建设的投入,计划从2021年初到2023年末,累计投入4250万元.已知2021年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是( )
A.
B.
C.
D.
2、如图,点D、E分别是的边
、
的中点,点F在
的延长线上,且
.若
,
,则
的长为( )
A.4.5
B.3.5
C.3
D.4
3、汽车由贵港驶往相距约350千米的桂林,如果汽车的平均速度是100千米/时,那么汽车距桂林的路程s(千米)与行驶时间t(小时)的函数关系可用图象表示为( )
A. B.
C. D.
4、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是( )
A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣1
5、在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是( )
A.1:2:3:4
B.1:2:2:1
C.1:1:2:2
D.2:1:2:1
6、已知点,
,
,
在直线
上,且
,下列选项正确的是
A. B.
C.
D. 无法确定
7、如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()
A.4 B. C.
D.8
8、下列方程中,有实数根的是( )
A. B.
C.
D.
9、如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是( )
A.x<5
B.x>5
C.x<﹣4
D.x>﹣4
10、某校为了了解学生对“白求恩同志事迹”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查,在这次调查中,样本是( )
A. 2 400名学生
B. 所抽取的100名学生对“白求恩同志事迹”的知晓情况
C. 100名学生
D. 每一名学生对“白求恩同志事迹”的知晓情况
11、等腰梯形一条对角线长为,且两条对角线夹角为
,则梯形的面积为__________
12、如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.
13、在●○●○○●○○○●○○○○●○○○○○中,空心圈“○”出现的频率为________.
14、2020 年新冠肺炎疫情影响全球各国感染人数持续攀升.医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来.长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍.两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求乙厂房每天生产多少箱口罩?设乙厂房每天生产x箱口罩,依题意可得方程为:_________________
15、与数字最接近的整数是_____.
16、如图,两个反比例函数y= 和y=
在第一象限内的图象依次是C2和C1,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_________.
17、某市2018年有3000名学生参加初中毕业生会考,要想了解这3000名学生的数学成绩,从中随机抽取了300名学生的数学成绩进行统计分析,在此问题中,总体是______________,样本是__________________
18、如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是 .
19、将直线y=﹣3x+2向下平移6个单位长度得到的直线所对应的函数表达式为_____.
20、已知y=1++
,则2x+3y的平方根为______.
21、在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形——筝形.
初识定义:两组邻边分别相等的四边形是筝形.
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .
性质研究:
(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图的筝形ABCD(AB=AD,BC=CD)的性质进行探究,以下判断正确的有 (填序号).
①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥筝形ABCD的面积为AC×BD.
(3)在上面的筝形性质中选择一个进行证明.
性质应用:
(4)直接利用你发现的筝形的性质解决下面的问题:
如图,在筝形ABCD中,AB=BC,AD=CD,点P是对角线BD上一点,过P分别做AD、CD垂线,垂足分别为点M、N.当筝形ABCD满足条件 时,四边形PNDM是正方形?请说明理由.
判定方法:
(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .
22、计算:(2﹣1)(2
+1).
23、先化简,再求值:,其中x=4.
24、如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
25、如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:
(1)此一次函数的解析式;
(2)△AOC的面积.