1、下列计算正确的是( )
A. B.
C.
D.
2、如图,在中,点
分别在
边上,且
,若S四边形BCED
,则
的值为( )
A. B.
C.
D.
3、下列计算正确的是( )
A.
B.
C.
D.
4、式子在实数范围内有意义,则x的取值范围是()
A. B.
C.
D.
5、自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为( ).
A.73×10﹣6 B.0.73×10﹣4 C.7.3×10﹣5 D.7.3×10﹣4
6、我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若个人乘一辆车,则空
辆车;若
个人乘一辆车,则有
个人要步行,问人与车数各是多少?若设有
个人,则可列方程是( )
A. B.
C. D.
7、《孙子算经》中有一道题,原文是:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思是:一个笼中装有鸡和兔子,上面数共有35个头,下面数共有九十四只脚,问鸡兔各有几只?如果设鸡有x只、兔有y只,则列出正确的方程组是( )
A. B.
C. D.
8、如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )
A.20° B.35° C.55° D.70°
9、下列图形都是由同样大小的●和○按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为( )
A. 91 B. 112 C. 123 D. 160
10、10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为( )
A.
B.
C.
D.
11、如图,在圆O中,CD是直径,弦AB⊥CD,垂足为E.若AB=2cm,∠BCD=22°30′,则圆O的半径为_______cm.
,
12、计算:40°﹣15°30′=_____.
13、直角三角形的两边长分别为16和12,则此三角形的外接圆的半径是 .
14、经过点A且半径为3的圆的圆心的轨迹___________________________________
15、如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为__________.
16、如图,点O为ACB弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠ABC=______°,∠D=______°.
17、如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字,
,
.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为______;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是的倍数的概率.
18、如图,在平面直角坐标系中,的三个顶点坐标分别是
,
,
.
(1)将向左平移4个单位长度后得到
,请画出
;
(2)以点为位似中心,在
轴的左侧画出
的位似图形
,使
与
的位似比为1:2;
(3)请直接写出的值.
19、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是通常的四则运算.请解方程(﹣2)⊗x=1⊗x.
20、某天,甲车间工人加工零件,工作中有一次停产检修机器,然后以原来的工作效率继续加工,由于任务紧急,乙车间加入与甲车间一起生产零件,两车间各自加工零件的数量y(个)与甲车间加工时间t(时)之间的函数图象如图所示.
(1)求乙车间加工零件的数量y与甲车间加工时间t之间的函数关系式,并写出t的取值范围.
(2)求甲车间加工零件总量a.
(3)当甲、乙两车间加工零件总数量为320个时,直接写出t的值.
21、如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上。
(I)AB的长度等于
(II)请你在图中找到一个点P,使得AB是∠PAC的角平分线请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)
22、如图,某同学站在土坡A处观测教学楼的顶部B的仰角为58°,土坡坡角∠ACD=22°,AC=CE=8m,求教学楼的高度BE.(精确到0.1m,参考数据:,
,
,
,
,
)
23、如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
①当t为何值时,点P、M、N在一直线上?
②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
24、临近元宵节,嘉琪家从网上购买了4箱“库尔勒”香梨,但开箱验货后,发现其中混入了若干“红酥梨”.统计后发现每箱中最多混入了2个“红酥梨”,具体数据见表:
每箱混入“红酥梨”个数/个 | 0 | 1 | 2 |
箱数/箱 | 1 | m | n |
(1)若从4箱中任意选取1箱,则事件“箱中没有混入‘红酥梨’”是 .
A.必然事件 B.随机事件 C.不可能事件 D.确定事件
(2)若事件“每箱中混入1个‘红酥梨’”的概率为.
①求m和n的值;
②嘉琪准备将其中两箱送给舅舅,他从4箱中随机挑选了两箱,用列表法求两箱中一共混入了1个“红酥梨”的概率.