1、如图,AB是⊙O的弦,OA、OC是⊙O的半径,弧AC=弧BC,∠BAO=37,则∠AOC的度数是( )度
A. 74 B. 106 C. 117 D. 127
2、如图所示,在▱ABCD中,AB=AC=4,BD=6,P是线段BD上任意一点,过点P作PQ∥AB,与AC交于点Q,设BP=x,PQ=y,则能反映y与x之间关系的图象为( )
A. B.
C.
D.
3、已知在△ABC中,AB=AC,用尺规在BC上确定中点P,则下列作图痕迹不符合要求的是( )
A. B.
C.
D.
4、如图,在△ABC中,∠ACB=90°,BC=2,AC=1,则下列三角函数值正确的是( )
A.sinA=
B.tanB=
C.sinB=
D.cosA=
5、反比例函数y=-的图象上有(-2,y1),(-3,y2)两点,则y1与y2的大小关系是( )
A. y1>y2 B. y1=y2 C. y1<y2 D. 不确定
6、二次函数图象上部分点的坐标
对应值列表如下:
… | … | ||||||
… | … |
则该函数图象的对称轴是( )
A.直线
B.直线
C.直线
D.直线
7、如图,在矩形ABCD中,AB=5,BC=6,点E在BC边上,且BE=2,F为AB边上的一个动点,连接EF,以EF为边作等边△EFG,且点G在矩形ABCD内,连接CG,则CG的最小值为( )
A.3
B.2.5
C.4
D.2
8、下列说法不正确的是( )
A.为了解全市中小学生对网络直播课的满意程度,应采用抽样调查
B.数据,
,
,
,
的方差为
C.三角形的的内心到三角形三边距离相等
D.顺次连接对角线垂直的四边形的中点,所形成的四边形为菱形
9、在0,2,﹣3,﹣这四个数中,最小的数是( )
A.0
B.2
C.﹣3
D.﹣
10、已知数据划x1、x2、x3、……、x100是福建某企业普通职工的2020年的年收入,设这100个数据的平均数为a,中位数为b,方差为c,如果再加上中国首富马化腾的年收入x101,则在这101个数据中,a一定增大,那么对b与c的判断正确的是( )
A.b一定增大,c可能增大
B.b可能不变,c一定增大
C.b一定不变,c一定增大
D.b可能增大,c可能不变
11、如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是 cm.
12、将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是 .
13、如图,在平面直角坐标系中,等边的边长为4,点
在第二象限内,点
在有、轴正半轴,将
沿射线
平移,平移后点
的横坐标为
,则点
的横坐标为______.
14、点是
的黄金分割点,
,则线段
的长为__________.
15、如图在Rt△ABC中,∠A=90°,斜边上的高AD交BC于D,若BD=9,CD=4,则AD的长度等于_____.
16、如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是 _________°.
17、如图,在平面直角坐标中,二次函数y=ax2+bx+c的图象经过点A(6,0),B(﹣2,0),C(0,4).
(1)求二次函数y=ax2+bx+c的表达式;
(2)点P在第一象限的抛物线上,且能够使△ACP得面积最大,求点P的坐标;
(3)在(2)的前提下,在抛物线的对称轴上是否存在点Q,使得△APQ为直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.
18、如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.
(1)在OQ上画出表示路灯灯泡位置的点P;
(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;
(3)若AM=2.5米,求路灯灯泡P到地面的距离.
19、某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.
(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?
(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?
20、如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
21、如图,在正方形中,
是对角线
上的一个动点
,连接
,过点
作
交
于点
.
(1)如图①,求证:;
(2)如图②,连接为
的中点,
的延长线交边
于点
,当
时,求
和
的长;
(3)如图③,过点作
于
,当
时,求
的面积.
22、如图,,
分别是菱形
的边
,
的中点.求证:
.
23、从三角形(不是等腰三角形)一个顶点引出的一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形有两角对应相等,我们把这条线段叫做这个三角形的“优美分割线”.
(1)如图,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的“优美分割线”.
(2)在△ABC中,∠A=46°,CD为△ABC的“优美分割线”且△ACD为等腰三角形,求∠ACB的度数.
(3)在△ABC中,∠A=30°,AC=6,CD为△ABC的“优美分割线”,且△ACD是等腰三角形,求线段BD的长.
24、如图所示,在平面直角坐标系中,抛物线交
轴于点
,交
轴于
,
两点,
沿射线
方向平移,平移后的三角形记为
(点
在
上方),
交
于点
.
的延长线交抛物线于点
,
交抛物线于点
,连接
,
.
(1)求抛物线的解析式;
(2)设,求点
的坐标;
(3)当时,求
的面积.