1、根据图示,下列实验的操作处理中,正确的是( )
A.甲图为用单摆测重力加速度的实验,测周期T时应该从小球摆至最高点开始计时
B.乙图中当两通电导线的电流方向相同时,两通电导线会互相排斥
C.图丙是某同学利用“插针法”测定玻璃的折射率,如果有几块宽度大小不同的平行玻璃砖可供选择,为了减小误差,应选用宽度小的玻璃砖来测量
D.图丁是双缝干涉实验中得到的干涉条纹,若要使得分划板中心刻线与干涉条纹平行,则仅旋转测量头即可
2、下列说法正确的是( )
A.人在松软的土地上下陷时,人对地面的压力大于地面对人的支持力
B.“强弩之末,势不能穿鲁缟”,是因为弩箭的惯性减小了
C.跳高运动员在越杆时处于平衡状态
D.船相对于静水的速度大于河水流速时,船过河的最短路程等于河的宽度
3、如图所示,轻弹簧一端固定在列车车厢顶部。另一端与穿过光滑竖直杆的小球连接,杆足够长,在车以某一恒定加速度在水平面上启动的过程中,小球相对杆静止于M点。则( )
A.小球一定受重力、弹簧弹力和杆的弹力作用
B.小球可能只受重力和弹簧弹力作用
C.弹簧对球的弹力是由于球的形变产生的
D.小球所受合力为零
4、如图所示,带箭头的实线表示某电场的电场线,虚线表示该电场的等势面。其中A、B、C三点的电场强度大小分别为、
、
,电势分别为
、
、
。关于这三点的电场强度大小和电势高低的关系,下列说法中正确的是( )
A.
B.
C.
D.
5、下面四种情况中,能在空气和水的界面上发生全反射的是 ( )
A.光从空气射向水,入射角大于临界角
B.光从空气射向水,入射角小于临界角
C.光从水射向空气,入射角大于临界角
D.光从水射向空气,入射角小于临界角
6、关于物理学史和物理学家的贡献,下列说法不正确的是( )
A.密立根利用油滴实验测定了元电荷的数值
B.富兰克林分别给出了正电荷和负电荷的规定
C.库仑利用扭秤装置找到了真空中的两个静止电荷相互作用力的规律
D.法拉第发现在电荷周围真实存在着我们看不见、摸不着的电场线
7、地磁学家曾经尝试用“自激发电”假说解释地球磁场的起源,其原理如图所示:一个金属圆盘A在某一大小恒定、方向时刻沿切线方向的外力作用下,在弱的轴向磁场B中绕金属轴转动,根据法拉第电磁感应定律,盘轴与盘边之间将产生感应电动势,用一根螺旋形导线MN在圆盘下方连接盘边与盘轴,MN中就有感应电流产生,最终回路中的电流达到稳定值,磁场也达到稳定状态。下列说法正确的是( )
A.MN中的电流方向从M→N
B.MN中感应电流的磁场方向与原磁场方向相反
C.圆盘转动的速度逐渐减小
D.磁场达到稳定状态后,MN中不再产生感应电流
8、如图所示,河水流动的速度为v且处处相同,河宽度为a。在船下水点A的下游距离为b处是瀑布,为了使小船渡河安全(不掉到瀑布里去) ,则( )
A.小船船头垂直河岸渡河时间最短,最短时间为
B.小船轨迹垂直河岸渡河位移最小,渡河时间也最短
C.当小船沿轨迹 AB 渡河时,船在静水中的最小速度为
D.当小船沿轨迹 AB 渡河时,船在静水中的最小速度为
9、如图甲所示,一倾角为30°、上端接有R=3Ω定值电阻的粗糙导轨,处于磁感应强度大小为B=2T、方向垂直导轨平面向上的匀强磁场中,导轨间距L=1.5m,导轨电阻忽略不计、且ab两点与导轨上端相距足够远。一质量m=3kg、阻值r=1Ω的金属棒,在棒中点受到沿斜面且平行于导轨的拉力F作用,由静止开始从ab处沿导轨向上加速运动,金属棒运动的速度—位移图像如图乙所示(b点位置为坐标原点)。若金属棒与导轨间动摩擦因数,
,则金属棒从起点b沿导轨向上运动。x=1m的过程中( )
A.金属棒做匀加速直线运动
B.通过电阻R的感应电荷量为1C
C.拉力F做的功为38.25J
D.金属棒上产生的焦耳热为2.25J
10、如图甲所示,粗糙水平地面上静置一长为2.0m、质量为2kg的长木板,在其右端放一质量为1kg的小物块(可看作质点)。某时刻起对长木板施加逐渐增大的水平外力F,测得小物块所受的摩擦力Ff随外力F的变化关系如图乙所示。最大静摩擦力等于滑动摩擦力,重力加速度大小取g=10m/s2,若一开始改用F=16N的水平恒力拉长木板,则小物块在长木板上滑行的时间为( )
A.2s
B.3s
C.s
D.s
11、如图所示为两个共点力的合力F随两分力的夹角θ变化的图像,则这两个分力的大小可能为( )
A.1N和4N
B.2N和3N
C.1N和5N
D.2N和4N
12、如图,一列沿x轴传播的简谐横波在t=0时刻的波形如图中实线所示,经过t=0.5s波形如图中虚线所示,该波的周期T大于0.5s,图中d=0.4m。下列说法正确的是( )
A.波速大小一定为0.8m/s
B.若波沿x轴正方向传播,则周期为3s
C.x=1.2m和x=2.4m处的两质点在沿y轴方向上的最大距离为10cm
D.在t=0时刻若P点向下振动,则x=1.2m处质点的振动方向也向下
13、如图所示,套在竖直细杆上的轻环A由跨过定滑轮的不可伸长的轻绳与重物B相连,对A施加一竖直方向的外力让轻环A沿杆以速度v匀速上升,从图中M位置上升至与定滑轮的连线水平的N位置,已知
与竖直杆成
角,则( )
A.A匀速上升时,重物B减速下降
B.所施加的外力的方向竖直向上
C.轻环A过位置M时,重物B的速度
D.重物B下降过程,绳对B的拉力小于B的重力
14、已知某单色光的波长为,在真空中光速为
,普朗克常量为
,则电磁波辐射的能量子
的值为( )
A.
B.
C.
D.以上均不正确
15、质量为的凹槽静止在水平地面上,内壁为半圆柱面,截面如图所示,
为半圆的最低点,
为半圆水平直径的端点。凹槽恰好与竖直墙面接触,内有一质量为
的小滑块。用推力
推动小滑块由A点向
点缓慢移动,力
的方向始终沿圆弧的切线方向,在此过程中所有摩擦均可忽略,下列说法正确的是( )
A.推力先增大后减小
B.凹槽对滑块的支持力先减小后增大
C.墙面对凹槽的压力先增大后减小
D.水平地面对凹槽的支持力先减小后增大
16、“轨道康复者”是“垃圾”卫星的救星,被称为“太空110”,它可在太空中给“垃圾”卫星补充能源,延长卫星的使用寿命。假设“轨道康复者”的轨道半径为地球同步卫星轨道半径的五分之一,其运动方向与地球自转方向一致,轨道平面与地球赤道平面重合,下列说法正确的是( )
A.“轨道康复者”的速度是地球同步卫星速度的5倍
B.“轨道康复者”的加速度是地球同步卫星加速度的5倍
C.站在赤道上的人可观察到“轨道康复者”向东运动
D.“轨道康复者”可在高轨道上加速,以实现对低轨道上卫星的拯救
17、回旋加速器两个D形金属盒分别与高频交流电源两极相连接,D形盒半径为R,两盒放在磁感应强度为B的匀强磁场中,磁场方向垂直于盒底面,粒子源A置于盒的圆心附近,如图所示。若粒子源射出的粒子电荷量为q,质量为m,高频交变电源的电压为U、频率为f。则下列说法正确的是( )
A.所加交流电源的频率
B.粒子被加速后的最大动能为
C.加速电场的电压U越大,粒子被加速后从D形盒射出的速度就越大
D.若要使该粒子获得的速度加倍,在交流电源不变的情况下,可以使磁感应强度B加倍
18、如图所示,框架面积为S,框架平面与磁感应强度为B的匀强磁场方向垂直,则下列有关穿过平面的磁通量的情况表述正确的是( )
A.磁通量有正负,所以是矢量
B.若使框架绕转过60°角,磁通量为
C.若框架从初始位置绕转过90°角,磁通量为0
D.若框架从初始位置绕转过180°角,磁通量变化量为0
19、某人操控无人机从地面沿直线竖直向上升空,无人机向上经历加速、匀速和减速过程最后悬停在空中,下列说法正确的是( )
A.加速运动过程中无人机处于失重状态
B.匀速运动过程中无人机处于失重状态
C.减速运动过程中无人机处于失重状态
D.悬停时无人机处于失重状态
20、在光滑水平面上做匀速直线运动的木块,受到一个与速度方向相同且方向不变、大小从某一数值逐渐变小的外力作用时,木块将做( )
A.匀减速运动
B.速度逐渐减小的变加速运动
C.匀加速运动
D.速度逐渐增大的变加速运动
21、该同学又用螺旋测微器测量某电阻丝的直径,示数如图,则该金属丝的直径为 m.
22、从某一高度将石子以1m/s的初速度沿水平方向抛出,经2s石子落至水平地面。忽略空气阻力,重力加速度g=10m/s2,则石子在运动过程中下落的高度为_____m,石子在运动过程中的水平位移为______m。
23、线段OB上存在静电场,OB上电场强度随空间变化规律如图所示。线段上有一点A,O、A、B三点的电场强度大小分别为E0、0、。将一带电荷量+q的粒子从O点由静止释放,只在电场力作用下运动,粒子到达B点时速度变为零。已知A、B两点距O点的距离分别为xA、xB,则xB=______xA,粒子在运动过程中最大动能为_________。
24、如图所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为。则铁链A端受的拉力
_________。
25、如图甲所示,质量为M的木板B静置于粗糙水平桌面上,质量为m的物块A叠放在木板上,A左侧通过水平细绳与固定的传感器相连。时刻起,用一水平向右且随时间逐渐增加的力作用在B上,传感器的示数F传随时间t变化的规律如图乙所示,t2时刻水平拉力大小为Fb、传感器示数为
,已知最大摩擦力等于滑动摩擦力,重力加速度大小为g。t2时刻B受A的滑动摩擦力大小为___________,B受桌面的摩擦力大小___________。
26、物体的加速度跟所受的合力成__________,跟物体的质量成__________,加速度的方向跟合力的方向__________。
27、(1)做静电场探究实验时,要给下图中的球形导体带上静电我们可选用下图中的仪器__________(填字母)
(2)绝缘细线上端固定,下端挂一轻质小球a,a的表面镀有铝膜;在a近旁有(1)中已带上电的绝缘金属球,旁边放着的是拾电球。利用这些仪器我们可以实现的实验目的有__________(可多选)
A. 验证库仑定律
B. 证明带电体之间的静电作用力和带电体之间的距离是相关的
C. 证明带电体之间的静电作用力和带电体的电量大小是相关的
D. 证明静电作用力的大小和带电体的电量大小是成正比的
(3)某同学用下图装置进行“探究碰撞中的不变量”的实验,该实验__________平衡摩擦力,__________分别测量两小车的质量(两空均填“需要”或“不需要”)。根据纸带数据可计算出小车碰撞后的共同速度大小为__________m/s。
28、为了使航天员适应在失重环境下的工作和生活,国家航天局需对航天员进行相应训练.如图所示,训练机沿30°倾角爬升到7 000 m高空后,向上拉起,沿竖直方向向上做匀减速运动,拉起后向上的初速度为200 m/s,加速度大小为g.当训练机上升到最高点后立即掉头向下,做竖直向下的加速运动,加速度大小仍为g,在此段时间内模拟出完全失重.为了安全,当训练机离地2 000 m高时必须拉起,且训练机速度达到350 m/s后必须终止失重训练,取g=10 m/s2.求:
(1)训练机上升过程中离地的最大高度;
(2)训练机运动过程中,模拟完全失重的时间.
29、真空中竖直面内,半径为R的圆形区域内分布着垂直圆面向内的匀强磁场。一个带正电的粒子对着圆心以初速度v0水平射入匀强磁场,射出匀强磁场时,速度方向偏转了θ=角,速度反向延长线过圆心,如图所示。已知粒子质量为m,电荷量为q,不计重力。(
,
)求:
(1)匀强磁场的磁感应强度大小;
(2)若将圆形区域内的匀强磁场替换为竖直向上的匀强电场,该粒子入射位置和速度保持不变,使该粒子仍然从同一个位置射出,求此匀强电场的电场强度大小。
30、如图所示,两根足够长的固定的光滑平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路。ab导体棒的质量为m,cd导体棒的质量为2m,电阻皆为R,回路中其余部分的电阻不计。在整个空间内都有竖直向上的匀强磁场,磁感应强度为B。两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd的初速度v0,两导体棒在运动中始终不接触。求:
(1)运动中两棒产生的总焦耳热;
(2)运动中流过导体棒ab的电量。
31、如图所示,空间有范围足够大的水平方向的匀强电场,一带电小球从水平地面以大小为v0的速度竖直向上抛出,到达最高点时速度大小为,不计空气阻力。求:
(1)小球所受电场力F与重力G的大小之比;
(2)小球落地前瞬时速度大小。
32、高一年级物理兴趣小组研究物体在约束条件下的运动,设计了如图所示的方案。一根符合胡克定律的弹性轻绳一端系于点,并绕过位于
处的光滑小圆环,另一端连接一个质量为
的小球,小球穿在一根倾斜放置的直杆上,直杆倾角为
,弹性轻绳的自然长度恰好与
之间距离相等,
与直杆之间的垂直距离为
,小球与直杆间的动摩擦因数为
,且最大静摩擦力与滑动摩擦力相等,最初用手捉住小球使其位于直杆上的
点,
点在
的正下方,此时弹性绳的张力大小为
。某时刻释放小球,不计空气阻力,重力加速度为
。
,
。求:
(1)小球从释放直至运动到最高点过程中的加速度与位移
的关系式;
(2)小球运动过程中具有最大动能时的位置坐标和此时的动能;
(3)小球向上到达最远处后应该给小球一个多大的沿杆向下的瞬时速度使其恰好回到
点。