1、如图所示,条形磁铁从高h处自由下落,中途穿过一个固定的空心线圈,开关S断开时,条形磁铁落地用时t1,落地时速度为v1;开关S闭合时,条形磁铁落地用时t2,落地时速度为v2.则它们的大小关系正确的是 ( )
A.t1>t2,v1>v2
B.t1=t2,v1=v2
C.t1<t2,v1<v2
D.t1<t2,v1>v2
2、如图所示,纸面内以O点为圆心的圆周上有M、N、A、B四个点,MN、AB为直径且互相垂直。若将两根直导线垂直于纸面放在M、N处,并通入大小相等、方向垂直纸面向外的电流。下列说法正确的( )
A.O点的磁感应强度大小为零
B.O点磁感应强度的方向由O指向B
C.A、B两点磁感应强度相同
D.B点的磁感应强度方向与MN连线平行且方向向左
3、某电路图如图所示,电源的电动势,内阻
,滑动变阻器
的最大阻值为
,定值电阻
的阻值为
,闭合开关
,将滑片
由
端缓慢移至
端,则下列说法正确的是( )
A.滑动变阻器消耗的最大功率为
B.电源的最大输出功率为
C.路端电压的最大值为
D.电源的最大效率约为
4、以下关于物理学研究方法以及物理学相关知识的叙述正确的是( )
A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法
B.当时,平均速度可看成瞬时速度,这运用了理想模型法
C.在国际单位制中,力学中的三个基本单位为:、
、
D.加速度与质量
、合外力
之间的关系
,利用了比值定义法
5、将一正电荷从无穷远处移至电场中M点,静电力做功为,若将一个等量的负电荷从电场中N点移向无穷远处,静电力做功为
,则M、N两点的电势φM、φN有如下关系( )
A.
B.
C.
D.
6、某同学从一塔顶上每隔0.8s由静止释放一个小球,当刚释放第7个小球时,第1个小球恰好落地。不计空气阻力,重力加速度g取,则下列说法中正确的是( )
A.小球落地时的速度大小为56m/s
B.第1个小球落地时,第6个小球下落的距离为3.2m
C.第1个小球落地时,第2个小球与第3个小球的间距为16m
D.第1个小球落地前瞬间,第1个、第2个和第5个小球的速度大小之比为
7、2023年初,我国自主研制的AS700“祥云”载人飞艇首飞成功。假设该飞艇从地面由静止升起,先加速紧接着减速,减速到0后悬停在空中。在整个过程中,加速时可认为飞艇做匀加速直线运动,加速度大小为,减速时可认为飞艇做匀减速直线运动,加速度大小为
,若飞艇在该过程中运动的总时间为t,则飞艇减速运动的时间为( )
A.
B.
C.
D.
8、某科研小组设计测量超导环中的电流强度,根据带电量为q的点电荷以速率v直线运动会产生磁场,该运动电荷在速度方向上各点产生的磁感应强度恰为0,垂直该电荷所在处速度方向上、距该电荷r处产生的磁感应强度为,其中k是静电常数,c是真空中的光速。将霍尔元件放在超导环的圆心处,通过测量出的霍尔电压来计算超导环的电流。已知某次实验超导环的半径为R,流过霍尔元件的电流为
,霍尔电压为
,且
,其中H是常数,则超导环中的电流强度为( )
A.
B.
C.
D.
9、以下物理量属于矢量且单位正确的是( )
A.磁通量(T)
B.电场强度(V/m)
C.磁感应强度(Wb)
D.电势差(V)
10、下列叙述符合物理学史事实的是( )
A.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维耶应用万有引力定律,计算并预测到海王星的存在
B.著名的比萨斜塔实验证实了古希腊学者亚里士多德的观点
C.1798年,英国物理学家牛顿利用扭秤装置比较准确地测出了万有引力常量
D.1619年,丹麦天文学家第谷经过几十年的观察,在《宇宙和谐》著作中发表了行星运动的周期定律
11、如图所示,两根间距为d的平行光滑金属导轨间接有电源E,导轨平面与水平面间的夹角θ=30°。金属杆ab垂直导轨放置,导轨与金属杆接触良好。整个装置处于磁感应强度为B的匀强磁场中。当磁场方向垂直导轨平面向上时,金属杆ab刚好处于静止状态,若将磁场方向改为竖直向上,要使金属杆仍保持静止状态,可以采取的措施是( )
A.减小磁感应强度B
B.调节滑动变阻器,使电流减小
C.减小导轨平面与水平面间的夹角θ
D.将电源正负极对调使电流方向改变
12、2023年杭州第19届亚运会,中国跳水队延续强势发挥,将杭州亚运会10枚金牌全部收入囊中,连续13届包揽跳水项目的金牌。从某跳水运动员离开跳板开始计时,该运动员重心的图像大致如图所示,不计空气阻力,重力加速度g取10m/s2,运动员重心的轨迹视为直线,取竖直向下为正方向。下列说法正确的是( )
A.运动员在1s时上升到最高点
B.运动员运动过程中的加速度先减小后增大再减小
C.运动员从最高点到入水下落高度为3m
D.运动员在时间内的平均速度大小为
13、各种车辆都有自己的最大行驶速度,某货车的最大速度是25m/s,某摩托车的最大速度是20m/s。在一段平直道路的路口,该货车和摩托车并排停在停止线处,绿灯亮起后两车同时启动,做匀加速直线运动,达到最大速度后做匀速直线运动,两车的 v-t图像如图所示,则启动后经过多长时间两车将再次并排( )
A.20s
B.25s
C.30s
D.35s
14、如图所示,单摆在竖直平面内的、
之间做简谐运动,
点为单摆的固定悬点,
点为运动中的最低位置,则下列说法正确的是( )
A.摆球在点时,动能最大,回复力最大
B.摆球由点向
点摆动过程中,细线拉力增大,回复力增大
C.摆球在点和
点时,速度为零,故细线拉力最小,但回复力最大
D.摆球在点时,重力势能最小,机械能最小
15、关于电荷的电荷量,下列说法错误的是( )
A.电子的电荷量是由密立根油滴实验测得的
B.物体所带电荷量可以是任意值
C.物体所带电荷量最小值为1.6×10-19C
D.物体所带的电荷量都是元电荷的整数倍
16、如图所示,车的顶棚上用细线吊一个质量为m的小球,车厢底板上放一个质量为M的木块,当小车沿水平面直线运动时,小球细线偏离竖直方向角度为θ,木块和车厢保持相对静止,重力加速度为g,下列说法中正确的是( )
A.汽车正向右匀减速运动
B.汽车的加速度大小为gcosθ
C.细线对小球的拉力大小为mg
D.木块受到的摩擦力大小为Mgtanθ
17、分子云中的致密气体和尘埃在引力作用下不断集聚逐渐形成恒星,恒星的演化会经历成年期(主序星)、中年期(红巨星、超巨星)、老年期——恒星最终的归宿与其质量有关,若质量为太阳质量的倍将坍缩成白矮星,质量为太阳质量的
倍将坍缩成中子星,质量更大的恒星将坍缩成黑洞。假设恒星坍缩前后可看成质量均匀分布的球体,质量不变,体积缩小,自转变快。已知逃逸速度为第一宇宙速度的
倍,中子星密度约为白矮星密度的
倍,白矮星半径约为中子星半径的
倍。根据万有引力理论,下列说法正确的是( )
A.恒星坍缩后的第一宇宙速度变大
B.中子星的逃逸速度小于白矮星的逃逸速度
C.同一恒星表面任意位置的重力加速度大小相同
D.恒星坍缩后表面两极处的重力加速度变小
18、如图所示,水面上A、B两点有两个频率相同的波源,两波源发出的波在水面发生干涉。以线段的中点
为圆心在水面上画一个半圆,半径
与
垂直。观察发现
点始终处于静止状态,圆周上的
点是
点左侧距
点最近的。也始终处于静止状态的点。已知半圆的直径为
,
,
,
,则该波的波长为( )
A.
B.
C.
D.
19、我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭,如图所示,发射舱内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。设从火箭开始运动到点火的过程始终受气体推力,则此过程中( )
A.气体对火箭推力的冲量等于火箭动量的增加量
B.高压气体释放的能量等于火箭动能的增加量
C.在气体推力作用下,火箭的速度一直在增大
D.气体的推力和空气阻力对火箭做功之和等于火箭机械能的增加量
20、如图所示,用一轻绳将光滑小球P系于粗糙墙壁上的O点,在墙壁和球P之间夹有一矩形物块Q,整体处于静止状态。略微改变绳子的长度,P、Q仍然均处于静止状态,则下列相关说法正确的是( )
A.P、Q两物体都受3个力作用
B.若绳子变短,墙壁对Q的支持力将减小
C.若绳子变短,绳子的拉力将变大
D.若绳子变短,Q受到的静摩擦力将增大
21、如图所示,两端开口的圆筒内嵌有一凸透镜,透镜主光轴恰好与圆筒中轴线重合。为了测出该透镜的焦距以及透镜在圆筒内的位置,小李同学做如下实验:在圆筒左侧凸透镜的主光轴上放置一点光源S,在圆筒右侧垂直凸透镜的主光轴固定一光屏,点光源S与光屏的距离为L。左右移动圆筒,当圆筒左端面距离点光源S为a时,恰好在光屏上成一个清晰的像;将圆筒向右水平移动距离b,光屏上又出现了一个清晰的像。则凸透镜和圆筒左端面的距离x为____________,该透镜的焦距f为__________。
22、如图所示的线圈有100匝,穿过线圈的磁通量为0.04 Wb,匀强磁场的方向向左,垂直于线圈的截面,现将磁场方向在2 s内改为与原方向相反,并且磁通量增大到0.08 Wb,则在这2 s内,线圈产生的平均感应电动势为________,如线圈电阻是1 Ω,则平均感应电流是________ A.
23、图所示为一具有金属罩壳的金箔验电器。A为金属小球B为金属杆,C为金箔,D为金属罩壳。验电器放在绝缘板S上。现将一定量的正电荷移至小球A上,于是两金箱将___________。然后用一具有绝缘柄的金属叉K将小球A与金属罩壳D相连,则两金箱将___________。最后移去金属叉,再用手指触及小球A,则两金箔将___________。
24、一艘宇宙飞船飞近某一新发现的行星,并进入靠近行星表面的圆形轨道绕行数圈后,着陆在该行星上,飞船上备有以下实验器材料:
A.精确秒表一个 B.已知质量为m的物体一个
C.弹簧测力计一个 D.天平一台(附砝码)
已知宇航员在绕行时和着陆后各作了一次测量,依据测量数据,可求出该行星的半径R和行星密度ρ.(已知万有引力常量为G)
(1)两次测量所选用的器材分别为_______________ 、 ______________ (用序号表示)
(2)两次测量的物理量分别是_______________ 、_______________ (写出物理量名称和表示的字母)
(3)用该数据推出半径R、密度ρ的表达式:R=_______________ ,ρ=_____________________ .
25、设宇航员在某行星上从高27m处自由释放一重物,测得在下落最后1s内所通过的距离为15m,则重物下落的总时间是__________s,该星球表面的自由落体加速度为_________m/s2.
26、已知地球同步卫星离地心距离为,其运行速率用
表示,加速度大小用
表示;又已知地球半径为
,在赤道上物体随地球自转的向心加速度大小用
表示,第一宇宙速度用
表示。则由此可知,
________;
________。
27、用如图所示的实验装置研究:小车质量一定的情况下,加速度与合力的关系。主要实验步骤如下:
A.如图所示,安装实验器材,调节轨道的倾角,轻推小车,使小车恰能做匀速直线运动;
B.用质量相等的若干槽码挂在细线的一端,细线的另一端与小车相连;
C.将小车放于靠近打点计时器处,接通电源,释放小车,得到一条打好点的纸带并记录槽码的个数n;
D.保持小车的质量不变,改变挂在细线上质量相等的槽码的个数,再做几次实验;
E.在每条纸带上选取一段比较理想的部分,算出每条纸带的加速度a;
F.将各次实验中的数据填入表中,做出a- n图像。
结合上述实验步骤,完成下列问题:
(1)实验步骤A的目的是让小车加速运动时,小车所受合力的大小________(选填“大于”“小于”或“等于”)细线拉力的大小。
(2)实验数据如下表所示:
序号 | 槽码的个数n | 加速度a/(m· s-2) |
1 | 1 | 0.12 |
2 | 2 | 0.24 |
3 | 3 | 0.37 |
4 | 4 | 0.47 |
5 | 5 | 0.60 |
以加速度a为纵轴、槽码的个数n为横轴建立直角坐标系,在坐标纸上描点,如图所示。
①请在该图中用“+”标出第5条纸带对应的坐标点,并画出a - n图像_____。
②观察a - n图像,可以判断小车的加速度a与合力F的关系是成________(选填“正比”或“反比”)。
③若换用一个质量更大的小车重新做这个实验,a -n图像的斜率应________(选填“变大”“变小”或“不变”)。
28、一半径为R的球体放置在水平面上,球体由折射率为
的透明材料制成。现有一束位于过球心O的竖直平面内的光线,平行于桌面射到球体表面上,折射入球体后再从球体竖直表面射出,如图所示,已知入射光线与桌面的距离为
;求出射角
。
29、如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:
(1)前4 s内的感应电动势;
(2)前4 s内通过R的电荷量.
30、如图所示,在平面内虚线
与
轴负方向夹角为
,虚线
右侧区域Ⅰ内存在垂直
平面向里的匀强磁场,虚线
左侧区域Ⅱ内存在沿
轴正向的匀强电场。一个比荷为
的带正电粒子从原点
沿
轴正方向以速度射入磁场,此后当粒子第一次穿过边界线
后恰能到达
轴上
点。不计粒子重力。求:
(1)匀强电场的电场强度和匀强磁场的磁感应强度
;
(2)粒子从点射出至第四次穿过边界线
的时间。
31、2022年我国举办了第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。如图所示为某滑道示意图,长直助滑道与起跳平台
平滑连接,
点是第二段倾斜雪坡(着陆坡)的起点,着陆坡与水平面的夹角
。质量
的运动员沿助滑道
下滑,经过一段时间后从
点沿水平方向飞出,在着陆坡上的
点着陆。已知
间的距离
,
,
,取重力加速度
,将运动员视为质点,忽略空气阻力的影响。求运动员。
(1)从点水平飞出到落在着陆坡上
点所用的时间
;
(2)从点水平飞出时速度
的大小;
(3)从点水平飞出到落在着陆坡上
点过程所受重力做功的平均功率
。
32、在磁感应强度的匀强磁场中有一个长方形金属线圈abcd,匝数
,ad边长
,ab边长
。线圈的ad边与磁场的左侧边界重合,如图所示,线圈的电阻
.用外力把线圈从左侧边界匀速平移出磁场,速度大小为
。试求在线圈匀速平移出磁场的过程中:
(1)线圈产生的电动势大小;
(2)b、c两点间的电势差;
(3)外力对线圈所做的功;
(4)通过线圈导线某截面的电量。