1、下列四组图形中,一定相似的图形是( )
A.各有一个角是30°的两个等腰三角形
B.有两边之比都等于2∶3的两个三角形
C.各有一个角是120°的两个等腰三角形
D.各有一个角是直角的两个三角形
2、下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是( )
A. (A) B. (B) C. (C) D. (D)
3、如图,AB切⊙O于点B,OA与⊙O相交于点C,AC=CO,点D为上任意一点(不与点B、C重合),则∠BDC等于( )
A.120° B.130° C.140° D.150
4、如图边长为4的正方形中,
为边
上一点,且
,
为边
上一动点,将线段
绕点
顺时针旋转
得到线段
,连接
,则
的最小值为( )
A.
B.4
C.
D.
5、如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为( ).
A. 2 B. 2
C. 2 D. 3
6、如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为1,则图中阴影部分的面积为( )
A.
B.
C.
D.
7、如图,AB=4,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为( ).
A. B.
C.2 D.3
8、用电器的输出功率与通过的电流
、用电器的电阻
之间的关系是
,下面说法正确的是( )
A.为定值,
与
成反比例 B.
为定值,
与
成反比例
C.为定值,
与
成正比例 D.
为定值,
与
成正比例
9、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1∶2,∠OCD=90°,CO=CD.若点B的坐标为(1,0),则点C的坐标为( )
A. (1,2) B. (1,1) C. (,
) D. (2,1)
10、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,I为△ABC的内心,AI的延长线交BC于D,若OI⊥AD,则sin∠CAD的值为( )
A. B.
C.
D.
11、某产品年产量为台,计划今后每年比前一年的产量增长率为
,试写出两年后的产量
台与
的函数关系式:________.
12、在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D(0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,则点B1的坐标是_______.
13、分解因式:__________.
14、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为_____.
15、一元二次方程(x+2)2=0的解是__________.
16、如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2= ;Sn= .(用含n的式子表示)
17、在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1.
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.
18、计算:.
19、甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发.甲,乙两人到达N地后均停止骑行,已知M,N两地相距km,设甲行驶的时间为x(h),甲、乙两人之同的距离为y(km),表示y与x函数关系的图象如图所示.请你解决以下问题:
(1)求线段BC所在直线的函数表达式;
(2)分别求甲,乙的速度;
(3)填空:点A的坐标是 .
20、如图,延长正方形的一边
至点
与
相交于点
,过点
作
交
于点
.求证:
.
21、某校为了解七年级学生最喜欢的校本课程(厨艺课数字与生活、足球、采花戏)情况,随机抽取了七年级部分学生进行问卷调查,每名同学选且只选一门现将调查结果绘制成如下所示的两幅统计图:
请结合这两幅统计图,解决下列问题:
(1)在这次问卷调查中,一共抽取了 名学生;
(2)请补全条形统计图;
(3)若该校七年级共有1050名学生,请你估计其中最喜欢数字与生活的学生人数.
22、如图,一次函数y=kx+1的图象与反比例函数y=的图象交于点A、B,点A在第一象限,过点A作AC⊥x轴于点C,AD⊥y轴于点D,点B的纵坐标为-2,一次函数的图象分别交x轴、y轴于点E、F,连接DB、DE,已知S△ADF=4,AC=3OF.
(1)求一次函数与反比例函数的解析式;
(2)直接写出反比例函数的值大于一次函数的值的x的取值范围.
(3)在x轴上是否存在点P,使.若存在,求出Р点坐标;若不存在,请说明理由.
23、关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
24、如图,在中,
,
,将
绕点
按逆时针方向旋转得到
,当点
恰好在
边上,连
,求证:
.