1、的立方根是( )
A.2
B.
C.
D.
2、如图,数轴上的A,B,C,D四个点中,表示的点是( )
A.点A
B.点B
C.点C
D.点D
3、如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )
A. B.
C.
D.
4、等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为( )
A.16cm
B.21cm 或 27cm
C.21cm
D.27cm
5、某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所占的百分比为10%,则“步行”部分所对应的圆心角的度数是( ).
A. 120° B. 136° C. 140° D. 144°
6、计算的结果是( )
A.
B.
C.1
D.3
7、下列计算正确的是( )
A.3x2﹣2x2=1 B. C.a2•a3=a5 D.x÷y•
=x
8、60°角的正切值为( )
A.
B.
C.
D.
9、如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为( )
A.1
B.2
C.4
D.8
10、如图,在圆心角为的扇形
中,半径
,C为
的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为( )
A.
B.
C.
D.
11、在以O为坐标原点的直角坐标平面内有一点A(2,4),如果AO与x轴正半轴的夹角为α,那么sinα=________ .
12、若是方程
的两个实数根,则
_______。
13、如图,是由边长为1的小正方形组成的的网格,
的顶点都在格点上,请仅用无刻度的直尺作图.
(I)线段的长等于________;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个格点P,使并简要说明画图方法(不要求证明)______________
14、如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为_____.
15、计算:_______
16、如图,抛物线y=ax2+bx+c的顶点为D,与x轴交点A,B的横坐标分别为﹣1,3,与y轴负半轴交于点C.下面五个结论:
①2a+b=0;
②4a+2b+c>0;
③对任意实数x,ax2+bx≥a+b;
④只有当a=时,△ABD是等腰直角三角形;
⑤使△ABC为等腰三角形的a值可以有3个.
其中正确的结论有_____.(填序号)
17、如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是_____.
18、我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.
用过的餐巾纸投放情况统计图
根据图中信息,解答下列问题:
(1)此次调查一共随机采访了________名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为________度;
(2)补全条形统计图(要求在条形图上方注明人数);
(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;
(4)李老师计划从,
,
,
四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中
,
两人的概率.
19、解不等式组
20、如图,在平面直角坐标系xOy中,直线与y轴,x轴分别相交于点A、B.点D是x轴上动点,点D从点B出发向原点O运动,点E在点D右侧,DE=2BD.过点D作DH⊥AB于点H,将△DBH沿直线DH翻折,得到△DCH,连接CE.设BD=t,△DCE与△AOB重合部分面积为S.求:
(1)求线段BC的长(用含t的代数式表示);
(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.
21、“新冠肺炎”肆虐,无数抗疫英雄涌现,以下四位抗疫英雄是钟南山、李兰娟、李文亮、张定宇(依次记为).为让同学们了解四位的事迹,老师设计如下活动:取四张完全相同的卡片,分别写上
四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应抗疫英雄的资料,并做成小报.
(1)班长在四种卡片中随机抽到标号为的概率为_______.
(2)平平和安安两位同学抽到的卡片是不同英雄的概率是多少?
22、某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
| A型 | B型 |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.
23、(1)计算:;
(2)解方程:.
24、发散思维2017·丰台区二模为了解某校八年级学生每周上网的时间,两名学生进行了抽样调查,小丽调查了八年级电脑爱好者中40名学生每周上网的时间,小杰从全校400名八年级学生中随机抽取了40名学生,调查了他们每周上网的时间.小丽与小杰整理各自的样本数据,如下表所示:
时间段(时/周) | 小丽抽样人数 | 小杰抽样人数 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(表中每组数据包含最小值,不包含最大值)
(1)你认为哪名同学抽取的样本不合理?请说明理由;
(2)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体八年级学生中有多少名学生应适当减少上网的时间.