1、一元二次方程x2-3x=0的根是( )
A.x=0
B.x=3
C.x1=0,x2=3
D.x1=0,x2=-3
2、的绝对值是( )
A.
B.
C.
D.
3、“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有高,小开拿了一些
正方体木块和
正方体木块过来帮忙,已知
正方体木块高
,
正方体木块高
,且
、
两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有
高,则所有满足要求的整数
的值的和为( )
A.12 B.15 C.16 D.17
4、下列疫情防控宣传图片中,是轴对称图形的是( )
A.勤洗手 勤通风
B.打喷嚏 捂口鼻
C.有症状 早就医
D.防控疫情 我们在一起
5、如图,已知矩形ABCD,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=( )
A.
B.
C.2
D.
6、若关于x的不等式组无解,且关于y的一元一次方程2(y+1)+3k=11的解为非负数,则符合条件的所有整数
的和是( )
A.2
B.3
C.5
D.6
7、如果a>b,那么下列结论一定正确的是( )
A.3﹣a<3﹣b
B.a﹣3<b﹣3
C.ac>bc
D.a2>b2
8、在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是( )
A.
B.
C.
D.
9、将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( )
A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3
C.y=2(x﹣1)2﹣3 D.y=2x2﹣3
10、如图,已知点A,B分别是反比例函数y=(x<0),y=
(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=
,则k的值为( )
A. 2 B. ﹣2 C. 4 D. ﹣4
11、一个三角形的周长是12cm,则这个三角形各边中点围成的三角形的周长为___.
12、2022年7月12日,厦门大学在石墨炔纳米多孔膜中的气体传输机理方面取得重要进展,使用的石墨炔形态上可分为两部分,其中包含厚度约的准二维平坦层,数字0.00000009用科学记数法表示为______.
13、如图,“”形纸片由八个边长为1的小正方形组成,过
点切一刀,刀痕是线段
,若
下方部分的面积是纸片面积的一半,则
的长为______.
14、如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件________________或__________; 若利用“HL”证明△ABC≌△ABD,则需要加条件________或____________.
15、如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为,则(1)若记小长方形的长为
,宽为
,则
和
之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含
的代数式表示).
16、如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点
,第2次接着运动到点
,第3次接着运动到点
,…,按这样的运动规律,经过第2022次运动后,动点
的坐标是_______.
17、平面直角坐标系中,OABC是长方形,点O为原点,OA=6,OC=4,动点P从点A开始,沿AB-BC-CO运动,运动速度每秒2个单位.设点P运动时间为t,△APO的面积为S.
(1)直接写出点B的坐标 ;
(2)当点P到达点C时,t的值为 ;
(3)求S与t之间的数量关系式,并写出t的取值范围.
18、计算
(1)
(2)
19、计算:
(1)-;
(2);
(3);
(4)±.
20、如图,点P是外一点,
与
相切于A点,B,C是
上的另外两点,连接
,
,
(1)求证:是
的切线;
(2)若,
的半径为5,
,求
的长.
21、如图,已知数轴上点表示的数为
,
表示的数为
,满足
.动点
从点
出发以每秒
个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.
(1)写出数轴上点表示的数是__________,点
表示的数是__________;
(2)若点从
点出发向左运动,点
为
的中点,在点
到达点
之前,求证
为定值;
(3)现有动点,若点
从点
以每秒
个单位长度的速度沿数轴向右运动,同时点
出发,当点
到达原点
后
立即以每秒
个单位长度的速度沿数轴向左运动,求:当
时,则
点运动时间
的值为_________________.
22、(1)如图,在由小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑2个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰为轴对称图形.请在下图中画出两种不同的填涂方案设计,并用虚线标出对称轴;
(2)分解因式:.
23、为增强学生的身体素质,教育行政部门规定学生平均每天户外活动的时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了多少名学生?
(2)本次调查中,户外活动时间为0.5小时的学生有多少名?并补全下面的两幅统计图;
(3)如果某校共有1200名学生,请你估计该校学生中户外活动时间为2小时的学生有多少名?
24、如图,在△ABC中,ME和NF分别垂直平分AB和AC.
(1) 若BC = 10 cm,试求△AMN的周长.
(2) 在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度数.
(3) 在 (2) 中,若无AB = AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由.