微信扫一扫
随时随地学习
当前位置 :

吉林省辽源市2026年小升初(二)数学试卷(附答案)

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、,则的(  

    A.充分条件 B.必要条件

    C.既不是充分条件也不是必要条件 D.充要条件

  • 2、中,内角所对的边分别为,若,则角等于(  

    A. B. C. D.

  • 3、已知实数满足约束条件,则的最大值为(  

    A. B. C.0 D.

  • 4、已知倾斜角为的直线过抛物线焦点,且与抛物线相交于两点,若,则  

    A. B.1 C.2 D.4

  • 5、已知,则  

    A. B. C. D.

  • 6、设定义域为R的函数满足下列条件:对任意

    对任意,当时,有,下列不等式不一定成立的

    A. B. C. D.

  • 7、已知复数,其中为虚数单位,则       

    A.

    B.

    C.2

    D.

  • 8、设集合,则的子集个数为(       

    A.2

    B.4

    C.8

    D.16

  • 9、已知函数f(x)的导函数f′(x)的图象如图所示,则f(x)的图象可能是(  )

    A.

    B.

    C.

    D.

  • 10、已知点为椭圆的左焦点,点A为椭圆C的左顶点,过原点O的直线l交椭圆CPQ两点,若直线平分线段,则椭圆C的离心率       

    A.

    B.

    C.

    D.

  • 11、若直线与曲线有两个不同的公共点,则实数的取值范围是

    A.

    B.

    C.

    D.

  • 12、已知的大小关系是  (   )

    A.   B.   C.   D.

     

  • 13、201912月,湖北省武汉市发现多起新型冠状病毒肺炎病例,除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉,在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!这里不获取胜利不收兵的(  

    A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件

  • 14、已知函数f(x)=sinx﹣x,则不等式f(x+2)+f(1﹣2x)<0的解集是(  )

    A.   B.   C. (3,+∞)   D. (﹣∞,3)

     

  • 15、在正项等比数列{}中,若是关于的方程的两实根,则       

    A.8

    B.9

    C.16

    D.18

  • 16、已知函数,则的大致图像为(       

    A.

    B.

    C.

    D.

  • 17、从分别写有1,2,3,4 的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数小于第二张卡片上的数的概率为( )

    A.

    B.

    C.

    D.

  • 18、从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为(   )

    A.   B.   C.   D.

  • 19、满足约束条件,则的最小值为(   )

    A.9 B.6.5 C.4 D.3

  • 20、“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号,如图是折扇的示意图,的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )

    A.

    B.

    C.

    D.

二、填空题 (共6题,共 30分)
  • 21、若向量满足,且的夹角为,则_______.

  • 22、已知函数是钝角三角形的两个锐角,则________ (填写:).

  • 23、奇函数的周期,当时,,则_________.

  • 24、若直线与直线互相平行,则实数_____

  • 25、已知全集,则________.

  • 26、已知函数只有一个零点,且这个零点为正数,则实数的取值范围是____

三、解答题 (共6题,共 30分)
  • 27、某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时(万元).每件商品售价为0.05万元.通过分析,该工厂生产的商品能全部售完.

    (1)写出年利润(万元)关于年产量(千件)的函数解析式;

    (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

  • 28、已知函数f(x)=,其中a>0.

    (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;

    (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.

  • 29、如图,在四棱锥中,平面平面

    (1)求证:

    (2)求平面与平面夹角的余弦值.

  • 30、如图,抛物线方程为x2=2py(p>0),M为直线y=-2p上任一点,过M引抛物线的切线,切点分别为AB.求证:AMB三点的横坐标成等差数列.

  • 31、已知.

    (1)求的值;

    (2)求的值.

  • 32、在三棱锥中,分别是线段的中点,底面是正三角形,延长到点,使得.

    (1)为线段上确定一点,当平面时,求的值;

    (2)当平面,且时,求二面角的余弦值.

查看答案
下载试卷
得分 160
题数 32

类型 小升初
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞