1、下列各点在函数y=3x+2的图象上的是( )
A. (1,1) B. (-1,-1) C. (-1,1) D. (0,1)
2、在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积是
A.126 cm2 或66 cm2 B.66 cm2 C.120 cm2 D.126cm2
3、将分式中的x、y的值同时扩大3倍,则分式的值( )
A. 扩大3倍 B. 缩小到原来的 C. 保持不变 D. 扩大9倍
4、下列等式从左到右的变形是因式分解的是()
A.
B.
C.
D.
5、如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )
A.(8﹣4)cm2 B.(4﹣2
)cm2
C.(16﹣8)cm2 D.(﹣12+8
)cm2
6、下列说法中错误的是( )
A.“买一张彩票中奖”发生的概率是0
B.“软木塞沉入水底”发生的概率是0
C.“太阳东升西落”发生的概率是1
D.“投掷一枚骰子点数为8”是确定事件
7、若最简二次根式与
是同类二次根式,则b的值是
A.0 B.1 C. D.2
8、如图,为平行四边形
的对角线,
,
于
,
于
,
、
相交于
,直线
交线段
的延长线于
,下面结论:①
;②
;③
;④
其中正确的个数是( )
A.1 B.2 C.3 D.4
9、点P(2,-3)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10、如图,函数和
的图象相交于点
,则不等式
的解集为( )
A. B.
C.
D.
11、将点P(-3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是______.
12、如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
13、给定一列分式:,
,
,
,…(其中x≠0),用任意一个分式做除法,去除它后面一个分式得到的结果是_______;根据你发现的规律,试写出第6个分式________.
14、若am=2,an,则a3m﹣2n=______.
15、如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___
16、如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________ 米
17、如图,在长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.
18、如图,已知直线y=ax+b和直线y=kx交于点P(-4,-2),则关于x,y的二元一次方程组的解是________.
19、若关于x的一元二次方程有两个不相等的实数根,则实数
的取值范围是________.
20、如图,在中,
,
,
,将
绕点
逆时针旋转
得到
,连接
,则
的长为________.
21、随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:
2019年中考体育成绩(分数段)统计表 | ||
分数段 | 频数(人) | 频率 |
25≤x<30 | 12 | 0.05 |
30≤x<35 | 24 | b |
35≤x<40 | 60 | 0.25 |
40≤x<45 | a | 0.45 |
45≤x<50 | 36 | 0.15 |
根据上面提供的信息,回答下列问题:
(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;
(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?
(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
22、一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?
23、4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.
(1)求甲、乙两种图书的单价各是多少元?
(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?
24、如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足,
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
25、如图,Rt中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,为直角三角形?请说明理由.