微信扫一扫
随时随地学习
当前位置 :

吉林省白山市2026年小升初(三)数学试卷(含解析)

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、       

    A.

    B.

    C.

    D.

  • 2、设集合,则       

    A.

    B.

    C.

    D.

  • 3、设集合,集合,则( )

    A.

    B.

    C.

    D.

  • 4、若双曲线的顶点和焦点分别为椭圆的焦点和顶点,则该双曲线方程为

    A.   B.

    C.   D.

  • 5、如图,平面内的两条相交直线OP1OP2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包含边界).设=m+n,且点P落在第Ⅲ部分,则实数mn满足(       

    A.m>0,n>0

    B.m>0,n<0

    C.m<0,n>0

    D.m<0,n<0

  • 6、圆台的上下底面半径之比为,一条母线长度为2,这条母线与底面成角等于30°,这个圆台的体积为(       

    A.

    B.

    C.

    D.

  • 7、已知椭圆上一点关于原点的对称点为点为其右焦点,若,设,且,则该椭圆的离心率的取值范围是(       

    A.

    B.

    C.

    D.

  • 8、己知,则       

    A.

    B.

    C.

    D.

  • 9、下列函数中,最小值为4的是(       

    A.

    B.

    C.

    D.

  • 10、年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:.已知正十二面体有个顶点,则正十二面体有( )条棱

    A.

    B.

    C.

    D.

  • 11、中,角A满足,则当恒成立时,的最小值为(       

    A.

    B.

    C.1

    D.3

  • 12、中,,点P内(包括边界)的一动点,且,则的最大值是

    A.

    B.

    C.

    D.

  • 13、下列说法正确的是(

    A.命题“若,则”的否命题是“若

    B.命题“”的否定是“

    C.函数的最小值为2

    D.,则“”是“”的必要不充分条件

  • 14、已知函数在区间上是增函数,若函数上的图像与直线有且仅有一个交点,则的最小值为(       

    A.

    B.

    C.

    D.1

  • 15、已知定义域为的函数的导函数为,且,若实数,则下列不等式恒成立的是(       

    A.

    B.

    C.

    D.

  • 16、的内角的对边分别为,若的面积为,则  

    A. B. C. D.

  • 17、已知函数,且,则的值为(  

    A.2 B. C. D.3

  • 18、已知实数xy满足不等式,则最小值为(  

    A.2 B.4 C. D.8

  • 19、设集合的映射为,集合的映射为,则集合中的元素中的原象是

    A0 B-1   C0或-1   D0或1

     

  • 20、已知角的终边经过点,则    

    A.

    B.

    C.

    D.

二、填空题 (共6题,共 30分)
  • 21、底面是等腰直角三角形的直三棱柱,若该三棱柱的六个顶点都在球的表面上,则球的表面积为______

  • 22、实数满足,则______.

  • 23、在三角形中,已知中点,则三角形的周长为______

     

  • 24、若一个扇形的周长是为定值,则当该扇形面积最大时,其中心角的弧度数是_________

  • 25、已知下列五个运算:

    ①向量的模;

    ②化简

    ③化简

    ④函数的零点个数;

    ⑤无穷等比数列,各项的和.其结果等于的运算分别是________

  • 26、已知函数,若对,则的最小值为___________.

三、解答题 (共6题,共 30分)
  • 27、已知集合

    (1)当时,求

    (2)若,求实数的取值范围.

  • 28、如图,在三棱锥中,平面平面,若的中点.

    (1)证明:平面

    (2)设线段上有一点,当与平面所成角的正弦值为时,求的长.

  • 29、如图,在四棱锥中,底面为平行四边形,,且底面.

    (1)证明:平面平面

    (2)若的中点,且,求二面角的大小.

  • 30、已知的一个辐角,求的值.

  • 31、设函数. 图像的一条对称轴是直线

    1)求函数的解析式;

    2)若,试求的值.

     

  • 32、已知等比数列的前n项和为

    )求数列的通项公式;

    )若,求数列及数列的前n项和

查看答案
下载试卷
得分 160
题数 32

类型 小升初
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞