1、的值是( )
A. B.
C.
D.
2、已知点都在函数
的图象上,则y1、y2、y3的大小关系是( )
A.y2>y1>y3 B.y1>y2>y3 C.y1>y3>y2 D.y3>y1>y2
3、若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是( )
A. B.
C.
D.
4、将抛物线y=(x﹣3)2﹣4向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.y=(x﹣4)2﹣6
B.y=(x﹣2)2﹣2
C.y=(x﹣1)2﹣3
D.y=(x﹣4)2﹣2
5、某口罩厂10月份的口罩产量为24万只,因预防疫情需要,11月份、12月份均增大产量,使第四季度的总产量达到88万只.设该厂11、12月份的口罩产量的月平均增长率为x,根据题意可列方程为( )
A.88(1+x)2=24
B.88(1-x)2=24
C.24(1+x)2=88
D.24+24(1+x)+24(1+x)2=88
6、已知梯形ABCD中,,E、F、G、H分别是AB、BC、CD、DA的中点,如果添加一个条件,使得四边形EFGH成为矩形,那么所添加的这个条件可以是( )
A.
B.
C.
D.
7、下列代数式中,值一定是正数的是( )
A. +m B. ﹣m C. |m| D. |m|+1
8、下列运算正确的是( )
A.
B.
C.
D.
9、计算的结果是( )
A.
B.
C.
D.
10、下列运算中,正确的是( )
A. B.
C. D.
11、已知圆弧的半径是24cm,所对的圆心角为60°,则弧长是______cm.
12、将2690000用科学记数法表示为________.
13、已知在□ABCD中,一组邻角的差为80°则它的四个内角分别为__________________.
14、如图,直线与
相交于点
,则关于
的方程
的解是___________.
15、若,
,则
________.
16、计算: =________
17、在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).
(1)求这条抛物线的函数表达式;
(2)求该抛物线的顶点坐标;
(3)在给定坐标系内画出这条抛物线.
18、如图,在菱形中,
=60°, AB=2,点E是AB上的动点,作∠EDQ=60°交BC于点Q,点P在AD上,PD=PE.
(1)求证:AE=BQ;
(2)连接PQ, EQ,当∠PEQ=90°时,求的值;
(3)当AE为何值时,△PEQ是等腰三角形.
19、如图,△ABC是等腰直角三角形,∠BCA=90°,BC=AC,直角顶点C在y轴上,锐角顶点A在x轴上.
(1)如图①,若点C的坐标是(0,-1),点A的坐标是(-3,0),求B点的坐标;
(2)如图②,若x轴恰好平分∠BAC,BC与x轴交于点D,过点B作BE⊥x轴于E,问AD与BE有怎样的数量关系,并说明理由;
(3)如图③,直角边AC在两坐标轴上滑动,使点B在第四象限内,过B点作BF⊥x轴于F,在滑动的过程中,猜想OC、BF、OA之间的关系,并证明你的结论.
20、计算:
21、2021年2月10日“天问一号”火星探测器抵达火星轨道,成为中国首颗人造火星卫星.某校组织首届“航天梦 报国情”航天知识竞赛活动,八年级全体学生参加了“航天知识竞赛”,为了解本次竞赛的成绩,小军随机抽取八年级20名参赛学生的成绩,收集数据(单位:分)如下:90,75,80,80,70,75,80,85,82,95,95,75,90,70,92,95,84,75,85,67
整理数据:
成绩x/分 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
频数 | 1 | 6 | a | b |
分析数据:
平均数 | 中位数 | 众数 |
82 | c | d |
根据上述数据回答以下问题:
(1)请直接写出表格中a,b,c,d的的值.
(2)活动组委会决定,给“航天知识竞赛”成绩在90分及以上的同学授予“小宇航员”称号.根据上面的统计结果,估计该校八年级600人中约有多少人将获得“小宇航员”称号.
22、已知关于x的方程与
的解相同,求m的值.
23、解方程:.
24、将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )
A. B.
C.
D.