微信扫一扫
随时随地学习
当前位置 :

吉林省长春市2026年中考真题(一)数学试卷(原卷+答案)

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、已知向量,若共线,则等于(       

    A.

    B.

    C.

    D.

  • 2、中国古代数学著作《算法统宗》中有这样一个“九儿问甲歌”问题:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第个儿子的年龄为,则

    A.

    B.

    C.

    D.

  • 3、用反证法证明命题:“若系数为整数的一元二次方程ax2bxc=0(a≠0)有有理根,那么abc中至少有一个是偶数”.对该命题结论的否定叙述正确的是(   )

    A. 假设abc都是偶数

    B. 假设abc都不是偶数

    C. 假设abc至多有一个是偶数

    D. 假设abc至多有两个是偶数

     

  • 4、ABC中,内角ABC的对边长分别为abc.已知,且,则b的值为( )

    A.2

    B.

    C.4

    D.

  • 5、“点的坐标满足”是“点在曲线上”的(       

    A.充分不必要条件

    B.必要不充分条件

    C.充要条件

    D.既不充分也不必要条件

  • 6、已知则关于的函数的图像可能是(  

    A. B. C. D.

  • 7、已知集合,则  

    A. B.

    C. D.

  • 8、集合,则       

    A.

    B.

    C.

    D.

  • 9、设i是虚数单位,若复数满足,则其共轭复数( )

    A.

    B.

    C.

    D.

  • 10、已知tan α=3,则的值是

    A.

    B.2

    C.-

    D.-2

  • 11、已知函数的最小正周期为,若将的图象向左平移个单位后得到函数的图象关于y轴对称,则函数的图象

    A.关于直线对称

    B.关于直线对称

    C.关于点对称

    D.关于点对称

  • 12、ABC中,a4,b4,A30°,则B等于

    A30° B30°150°   C60°   D60°120°

     

  • 13、函数的大致图象是

    A.

    B.

    C.

    D.

  • 14、在△ABC中,“A>B”是“a>b”的(  )

    A.充分不必要条件

    B.必要不充分条件

    C.充要条件

    D.既不充分也不必要条件

  • 15、的展开式中,的系数为(       

    A.

    B.

    C.

    D.

  • 16、设集合,集合,则

    A.

    B.

    C.

    D.

  • 17、已知函数的图象上存在关于轴对称的点,则实数的取值范围是(

    A. B.   C. D.

     

  • 18、中,的中点,则长为(       

    A.

    B.

    C.

    D.

  • 19、已知函数的零点分别为,以下说法正确的是(       

    A.

    B.

    C.

    D.

  • 20、已知分别是定义在上的偶函数和奇函数,且,则(   )

    A. B. C. D.

二、填空题 (共6题,共 30分)
  • 21、函数处的切线与坐标轴围成的图形面积为___________.

  • 22、用描述法表示平面直角坐标系内第四象限的点组成的集合_______.

  • 23、,则上的单调递增区间为________

  • 24、在①,②的外接圆半径,③这三个条件中任选一个,补充在下面问题中,并解答问题.中,角的对边分别为.已知的面积,且______.求边.(注:如果选择多个条件分别解答,按第一个解答计分)

  • 25、集合,若,则实数的值为__________

     

  • 26、已知直线与圆相切,则的值为__________

三、解答题 (共6题,共 30分)
  • 27、已知函数为定义在上的偶函数,且时,,求的解析式;

  • 28、在平面四边形中, ,将沿折起,使得平面平面,如图.

    (1)求证:

    (2)若中点,求直线与平面所成角的正弦值.

     

  • 29、已知函数.

    1)若直线与曲线相切于点,求点的坐标;

    2)是否存在,使在区间上的最大值不超过?请说明理由.

     

  • 30、如图,在三棱柱中,是棱的中点,侧棱底面

    (Ⅰ)求异面直线所成的角;

    (Ⅱ)求平面与平面所成二面角的正弦值.

  • 31、在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程是

    (1)求曲线的普通方程和直线的直角坐标方程;

    (2)已知,设直线和曲线交于两点,线段的中点为,求的值.

  • 32、已知.

    1)求的值;

    2)若,求的值.

查看答案
下载试卷
得分 160
题数 32

类型 中考真题
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞