1、菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.4:1
B.5:1
C.6:1
D.7:1
2、如图,切
于点
交
于点
,点
在
上,若
,则
的度数是( )
A. B.
C.
D.
3、如图,、
、
三种不同型号的卡片,每种卡片各有9张,其中
型卡片是边长为
的正方形,
型卡片是相邻两边长分别为
、
的长方形,
型卡片是边长为
的正方形(其中
).从其中取
张卡片(每种卡片至少取1张),并把取出的这些卡片拼成一个正方形,则所拼正方形的边长最大时,
的最大值为( )
A.16
B.18
C.20
D.22
4、单项式的系数和次数分别为( )
A. B.
C.
D.
5、一个凸多边形的内角和等于540°,则这个多边形的边数是( )
A.5
B.6
C.7
D.8
6、已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( )
A. 1∶2 B. 1∶4 C. 2∶1 D. 4∶1
7、函数y=﹣2x的图象一定经过点( )
A.(2,﹣1)
B.(,1)
C.(﹣2,1)
D.(﹣1,)
8、已知关于的方程
的解为
,则
的值为( )
A.3 B.-3 C.2 D.-2
9、由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )
A.4 B.5 C.6 D.9
10、如右上图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB的度数为
A.144° B.120° C.108° D.100°
11、如图,直线分别交x轴、y轴于点A、C,直线
分别交x轴、y轴于点B、D,直线AC与直线BD相交于点
,则不等式
的解集为______.
12、如图,四边形中,点
、
分别在
,
上,将
沿
翻折,得
,若
,
,
,
,则
________.
13、x2-5│x│+4=0的所有实数根的和是________.
14、若,则
=_________________.
15、代数式在实数范围内有意义,则
的取值范围是__________.
16、若多项式的值为2,则多项式
的值是______.
17、有一种窗户打开时需要往外推,推开的最大夹角是,安装在窗户上的定点
到窗上沿点
的距离为60厘米,滑片
在窗框
上滑动.如图所示是打开到最大时的侧面图,滑片从关闭状态的点
滑到端点
处,已知
厘米,那么滑片从点
滑到点
时滑过的距离
为多少厘米?(
,结果保留一位小数)
18、如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A-B-C路线以1cm/秒的速度运动,运动的时间为t秒.将APE以EP为折痕折叠,点A的对应点记为M.
(1) 如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t;
(2) 如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t;
(3) 直接写出点P在运动过程中线段BM长的最小值 .
19、如图,已知在中,
,
,
,求
的长和
的值
20、计算与化简:
(1)5+(﹣32)÷(﹣2);
(2)﹣12﹣6×(﹣)2+|﹣5|÷(﹣3);
(3)2x﹣3y+4x+5y;
(4)5x2﹣3(﹣xy﹣2+x2)﹣2xy.
21、某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元②用电超过100度的,超过部分每度收费0.8元
(1)小明家3月份用电84度,应缴费 元
(2)小亮家4月份用电平均每度0.6元,则他家4月份用了多少度电?
(3)小亮家5月份和6月份共用电250度,共缴费143元,并且6月份的用电量超过5月的用电量,那么,他家5、6月份各用了多少度电?
22、“绿水青山就是金山银山”.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为
.
(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;
(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?
23、已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC的长.
24、实数a、b在数轴上的位置如图所示,请化简:.