1、已知时,
,且知
在定义域上是奇函数,则当
时,
的解析式是( )
A. B.
C. D.
2、我国古代名著《庄子天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取
天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )
A. B.
C. D.
3、设m=cos10°,函数f(x)=logm(x2+1),a=f(sin29°),b=f(cos117°),c=f(ln2),则( )
A. B.
C.
D.
4、设函数则
( )
A.0 B.1 C.2 D.3
5、已知复数是关于
的方程
的一个根,则
( )
A.4
B.
C.
D.
6、已知函数在区间
上单调,且满足
.若函数
在区间
上恰有5个零点,则
的取值范围为( )
A.
B.
C.
D.
7、若的定义域为
,且满足
为偶函数,
的图象关于
成中心对称,则下列说法正确的个数是( )
①的一个周期为4
②
③图象的一条对称轴为
④
A.1
B.2
C.3
D.4
8、已知命题;命题
,则下列结论正确的是( )
A. 命题是假命题 B. 命题
是真命题
C. 命题是真命题 D. 命题
是真命题
9、一个几何体三视图所示,侧视图上的数值是对应线段的长度,则该几何体的体积为
A. B.
C. D.
10、已知复数满足
(
为虚数单位),则
的虚部为
A.1
B.-1
C.0
D.
11、将函数的图像向左平移
个单位,再向下平移
个单位,得到函数
的图像,则函数
的图像与函数
的图像( )
A. 关于点对称 B. 关于点
对称 C. 关于直线
对称 D. 关于直线
对称
12、已知正项等比数列中,
,则公比
( )
A.
B.
C.或
D.
13、已知点,则
与
的夹角的余弦值为( )
A.
B.
C.
D.
14、函数的值域为( )
A.
B.
C.
D.
15、已知,
,则
( )
A.
B.
C.
D.
16、已知函数在
上是减函数,则
的取值范围为( )
A.
B.
C.
D.
17、 ( )
A. B.
C.
D.
18、对数式M=log(a-3)(10-2a)中,实数a的取值范围是( )
A.(-∞,5)
B.(3,5)
C.(3,+∞)
D.(3,4)∪(4,5)
19、已知等式,
成立,那么下列结论:①
;②
;③
;④
;⑤
.其中可能成立的是( )
A.①② B.①②⑤ C.③④ D.④⑤
20、下列各选项中的两个函数的图象关于y轴对称的是( )
A.与
B.与
C.与
D.与
21、若,则
_____.
22、在中,若
,
,
,则
______.
23、据两个变量、
之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).
24、设全集且
,
,则
为___.
25、表面积为的球的体积是__________
.
26、在正方体ABCD﹣A1B1C1D1中,AB的中点为M,DD1的中点为N,则异面直线B1M与CN所成角的度数是_____.
27、求满足下列条件的椭圆的标准方程:
(1)两个焦点坐标分别是,椭圆上一点
到两焦点的距离之和等于10;
(2)过点,且与椭圆
有相同的焦点.
28、已知等差数列{an}的前n项和为Sn,若a4=4,S8=6S3.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
29、(1)若关于x的不等式的解集为R,求k的取值范围;
(2)若关于x的不等式对任意实数x恒成立,求m的取值范围.
30、在斜三角形中,角A,B,C的对边分别为a,b,c.
(1)若,求
的值;
(2)若,求
的值.
31、已知数列满足
,
,其中
是数列
的前n项和.
(1)求和
的值及数列
的通项公式;
(2)设.
①若,求k的值;
②求证:数列(中的任意一项总可以表示成该数列其他两项之积.
32、已知是奇函数.
(1)若,求实数a的值;
(2)若在R上是严格增函数,若实数a满足
,求a的取值范围.