1、记,当
时,
,则
( )
A.
B.
C.
D.
2、定积分的值等于
A.
B.
C.
D.
3、已知抛物线上的点
到焦点
的距离为4,若点
在
上,则点
到点
距离的最小值为( )
A.
B.
C.
D.
4、如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①;②当
时,
;③
;④当
秒时,
∽
;⑤当
的面积为
时,时间
的值是
或
;其中正确的结论是( )
A. ①⑤ B. ②⑤ C. ②③ D. ②④
5、在如图所示的锐角三角形空地(底边长为40,高为40
)中,欲建一个面积不小于
的内接矩形花园(阴影部分),则其边长
(单位:
)的取值范围是( )
A. B.
C.
D.
6、已知函数,
,则方程
的所有根的和等于( )
(A)0 (B)π (C)-π (D)- 2π
7、设函数,则
( )
A.-8
B.-6
C.6
D.8
8、平面向量满足
,
,
,
,则
的最小值为( )
A.
B.
C.1
D.2
9、设z1,z2为复数,下列命题一定成立的是( )
A.如果,a是正实数,那么
B.如果,那
C.如果,a是正实数,那么
D.如果,那么
10、正方体中,
,则点
与平面
的距离为( )
A.
B.
C.
D.
11、的大小关系是
A.
B.
C.
D.
12、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是( )
A.[-3,+∞) B.(-∞,-3] C.(-∞,5] D.[3,+∞)
13、下列结论,不正确的是( )
A.“”是“方程表示焦点
在y轴上的椭圆”的充要条件
B.若p是假命题,是q真命题,则命题与命题
均为真命题.
C.方程(m,n是常数)表示双曲线的充要条件是
.
D.若角α的终边在直线上,且
,则这样的角α有4个.
14、双曲线的渐近线方程是( )
A.
B.
C.
D.
15、定义在的函数
的导函数为
,对于任意的
,恒有
,则
的大小关系是( )
A. B.
C.
D.无法确定
16、设是关于x的方程
的根.若
,则实数a的取值范围是( )
A.
B.
C.
D.
17、已知函数的部分函数值如下表所示:
1 | 0.625 | 0.5625 | |||
0.632 | 0.2776 | 0.0897 |
那么的一个零点的近似值(精确到0.01)为( )
A.0.55
B.0.57
C.0.65
D.0.70
18、晶胞是构成晶体的最基本的几何单元,是结构化学研究的一个重要方面.在如图(1)所示的体心立方晶胞中,原子A与B(可视为球体)的中心分别位于正方体的顶点和体心,且原子B与8个原子A均相切.已知该晶胞的边长(图1中正方体的棱长)为,则当图(2)中所有原子(8个A原子与1个B原子)的体积之和最小值为( )
A.
B.
C.
D.
19、已知集合,
,则如图中阴影部分所表示的集合为( )
A. B.
C. D.
20、如图是一个程序框图,则输出的的值是( )
A.4 B.5
C.6 D.7
21、已知,若
,则
____________.
22、函数的定义域是______.
23、设函数的导函数为
,若函数
,则曲线
在点
处的切线方程为____________.
24、已知函数,则函数f(x)的导函数为
___.
25、设函数则
,则实数
的取值范围是______.
26、已知,
,则
的最大值为________.
27、今年上海疫情牵动人心,大量医务人员驰援上海.现从这些医务人员中随机选取了年龄(单位:岁)在内的男、女医务人员各100人,以他们的年龄作为样本,得出女医务人员的年龄频率分布直方图和男医务人员的年龄频数分布表如下:
年龄(单位:岁) | 频数 |
30 | |
20 | |
25 | |
15 | |
10 |
(1)求频率分布直方图中a的值;
(2)根据频率分布直方图估计样本中女医务人员年龄的中位数(精确到整数);
(3)在上述样本中用分层抽样的方法从年龄在内的女医务人员中抽取4人,从年龄在
内的男医务人员中抽取5人.记这9人中年龄在
内的医务人员有m人,再从这m人中随机抽取2人,求这2人是异性的概率.
28、在“产业兴市,工业强市”的政策指引下,枣庄经济蓬勃发展,经济开发区张范乡光明路附近新开业一个加油站,为了吸引顾客,举行优惠大酬宾活动,推出两个方案,方案一,现金加油,每升汽油优惠1.5元;方案二,充值1280元免费送一箱油.由于该加油站价格便宜,张先生决定长期在该加油站加油.
(1)经调查,家用轿车油箱的容量为35升到110升之间,已知92号汽油开业当日价格为6.15元/升,假定在此价格不变的情况下,请从经济利益角度出发,给出合理的选择方案.(精确到整数);
(2)实际上,我国成品油定价受国家管控,采取“十个工作日一调”原则逐月与国际市场价格联动,即国内成品油的价格根据国际油价价格的走势,每十个工作日调整一次,在十个工作日内,国际油价累计是上涨的,国内油价就上涨调整一次,在十个工作日内,国际油价累计是下跌的,国内油价就下跌调整一次,长期来看,为了更经济,张先生想到两个加油策略,在不考虑汽油价格升降的情况下,第一个策略是每次加油数量一定,第二个策略是每次加油所花钱数一定,请问哪种加油方式比较经济?并说明理由.
29、在平面直角坐标系xOy中,以原点O为极点,Ox为极轴建立极坐标系,曲线的极坐标方程为
,曲线
的参数方程为
(t为参数).
(1)求曲线的直角坐标方程与曲线
的普通方程;
(2)若P,Q分别为曲线和曲线
上的动点,求
的最小值.
30、记数列的前n项和为
,对任意
满足:
,且
.
(1)求数列的通项公式;
(2)若,
,求
的值.
31、已知m>0, ,
.
(1) 若p是q的充分不必要条件,求实数m的取值范围;
(2) 若m=5,“”为真命题,“
”为假命题,求实数x的取值范围.
32、如图,在四棱锥中,平面
平面
,
,
,
,
,
为棱
上一点,且
,
为棱
的中点.
(1)证明:平面平面
;
(2)求四棱锥的体积.