1、据查,某存车处某日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数是( )
A.
B.
C.
D.
2、下列命题的逆命题是真命题的是( )
A.矩形的对角线相等
B.菱形的四条边相等
C.如果两个角是直角,那么它们相等
D.平行四边形的一组对边相等
3、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A. B.
C.
D.
4、如图,在中,DE是AC的垂直平分线,且分别交BC,AC于D、E两点,
,
,则
的度数为( )
A.
B.
C.
D.
5、不等式 4x+12>0 的解集在数轴上表示正确的是( )
A. B.
C. D.
6、如图,四边形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 点M从B点出发,按从B→A→D→C的方向,沿四边形BADC的边以1cm/s的速度作匀速运动,运动到点C即停止.若运动的时间为t,△MOD的面积为y,则y关于t的函数图象大约是( )
A. B.
C. D.
7、如图,在平面直角坐标系中,点、
在函数
的图象上.当
时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E.随着m的增大,四边形ACQE的面积
A. 减小 B. 增大 C. 先减小后增大 D. 先增大后减小
8、在同一平面直角坐标系中,函数与
的图象大致是( )
A. B.
C.
D.
9、如果 那么下列不等式中正确的是
A. B.
C. D.
10、在一次排球垫球测试后,随机抽取八年级(2)班的5名同学的成绩(单位:个)如下:38,40,40,42,45,这组数据的众数是( )
A.38
B.40
C.41
D.42
11、如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx≤ax+4的解集为_____.
12、如图,∠AOB =∠COD =90°,∠B =∠C =30°OB =,点N在线段OD上,且
,点P是线段AB上的一个动点,在将△AOB旋转的过程中,线段PN的最小值是___.
13、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为_____.
14、高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为:5、7、9、10、7,则这组数据的众数是 .
15、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为______.
16、如图,,
,
,一机器人在点B处看见一个小球从点A出发沿着
方向匀速滚向点
,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC为__________.
17、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为___
18、若关于x的方程产生增根,那么 m的值是______.
19、如图,在平行四边形ABCD中,∠A=120°,AB=3,则∠B的度数为___________,CD=____________.
20、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用________统计图表示收集到的数据.
21、某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;
(2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;
(3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.
22、如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.
(1)求点C的坐标;
(2)求证:△OAB是直角三角形.
23、如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,则这个最短距离是多少千米?
24、解方程.
25、如图在平面直角坐标系中,一次函数与反比例函数
在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图像上的一点,MN∥x轴交一次函数于点N.
(1)求出k的值;
(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;
(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图像是否有交点,若有求出交点坐标,若没有并说明理由.