1、设向量满足
,现有如下命题:命题
的值可能为9;命题
“
”的充要条件为“
,则下列命题中,真命题为( )
A.p B. C.
D.
2、设,
,
,则( )
A.
B.
C.
D.
3、设全集为,集合
,则
( )
A. B.
C.
D.
4、某公司决定利用随机数表对今年新招聘的800名员工进行抽样调查他们对目前工作的满意程度,先将这800名员工进行编号,编号分别为001,002,…,799,800,从中抽取80名进行调查,下图提供随机数表的第4行到第6行
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45
若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的编号是( )
A.007 B.253 C.328 D.736
5、已知复数是一元二次方程
的一个根,则
的值为( )
A.1
B.
C.0
D.
6、已知函数,设
,
,
,则( )
A.
B.
C.
D.
7、已知首项为正数的等比数列中,
,
,则
( )
A. B.
C.
D.
8、将函数的图象向右平移
个单位长度后得到函数
的图象,若
是
的一个单调递增区间,且
在
上有5个零点,则
( )
A.1
B.5
C.9
D.13
9、在的展开式中,常数项是( ).
A.
B.
C.
D.
10、已知,则( )
A.
B.
C.
D.
11、已知实数满足约束条件
,则
的最大值是( )
A. B.
C.
D.
12、已知是公差不为0的等差数列
的前
项和,且
成等比数列,则
( )
A. 4 B. 6 C. 8 D. 10
13、已知抛物线:
的准线
平分圆
:
的周长,则
( )
A.2 B.3 C.4 D.6
14、为了解某地高三学生的期末数学考试成绩,研究人员随机抽取了100名学生对其进行调查,根据所得数据制成如图所示的频率分布直方图,则这100名学生期末数学成绩的中位数约为( )
A.92.5
B.95
C.97.5
D.100
15、已知平面向量,
满足
,那么
与
的夹角为( )
A.
B.
C.
D.
16、设函数,若
,则下列不等式正确的是( )
A.
B.
C.
D.
17、设集合,定义:集合
,集合
,集合
,分别用
,
表示集合S,T中元素的个数,则下列结论可能成立的是( )
A.
B.
C.
D.
18、函数的图像的切线斜率可能为( )
A.
B.
C.
D.
19、函数的图象大致是( )
A.
B.
C.
D.
20、记集合和集合
表示的平面区域分别是
和
,若在区域
内任取一点,则该点落在区域
的概率为( )
A. B.
C.
D.
21、已知A,B是曲线上两个不同的点,
,则
的取值范围是________.
22、如图,矩形中,
,
,
为
的中点,点
,
分别在线段
,
上运动(其中
不与
,
重合,
不与
,
重合),且
,沿
将
折起,得到三棱锥
,则三棱锥
体积的最大值为______.
23、已知定义在上的函数
满足
,且当
时,
图像与x轴的交点从左至右为O,
,
,
,…,
,…;
图像与直线
的交点从左至右为
,
,
,…,
,….若
,
,
,…,
为线段
上的10个不同的点,则
______.
24、在中,角A,B,C所对的边分别为
,则实数a的取值范围是____________.
25、函数在点
处的切线与直线
平行,则实数
______.
26、双曲线的右焦点恰好是的焦点,它的两条渐近线的夹角为
,则双曲线的标准方程为_________.
27、已知函数有三个极值点
,
(1)求实数的取值范围;
(2)求证:.
28、已知递增的等差数列,其前n项和为
,
,从①
,②
,③
=50中选出两个作为条件,求数列
的最大项.
注:如果选择多种方案分别解答,则按第一个解答计分.
29、抛物线的焦点为F,准线为
是抛物线上一点,过F的直线交抛物线于A,B两点,直线AP、BP分别交准线
于M、N.当
,点P恰好与原点O重合时,
的面积为4.
(1)求抛物线C的方程;
(2)记点的横坐标与AB中点的横坐标相等,若
,求
的最小值.
30、已知函数
(1)求函数在
内的单调递增区间;
(2)若对恒成立,求实数
的取值范围.
31、欧拉函数的函数值等于所有不超过正整数n,且与n互质的正整数的个数(互质是公约数只有1的两个整数),例如:
,
.
(1)求,
,
;
(2)若数列满足
,且
,求数列
的通项公式和前n项和
.
32、选修4-5:不等式选讲
已知函数(
).
(Ⅰ)若不等式恒成立,求实数
的最大值;
(Ⅱ)当时,函数
有零点,求实数
的取值范围.