1、图为跳水运动员从起跳到落水的示意图,在运动员从最高点到入水前的运动过程中,不计空气阻力,运动员在相同时间内的( )
A.速度变化量不一定相同
B.动量变化量一定相同
C.动能变化量一定相等
D.受到的重力冲量不一定相同
2、2023年,中国全超导托卡马克核反应实验装置(EAST)创造新的世界纪录,成功实现稳态高约束模式等离子体运行403秒。核技术于现代社会的应用非常广泛,人类对于核反应的研究已经覆盖到电力、医疗、军事、工业等各个领域,下列核反应方程中括号内的粒子为粒子的是( )
A.
B.
C.
D.
3、如图甲所示,在真空中固定两个相同的点电荷A、B,它们关于x轴上的P点对称,在x轴上的电场强度E与坐标位置x的关系图像如图乙所示。若在坐标原点O由静止释放一个点电荷C(受到的重力可忽略不计),释放后它先沿x轴正方向运动。规定沿x轴负方向为电场强度的正方向,则点电荷C( )
A.带正电荷
B.在处动能最大
C.在处电势能最大
D.将沿x轴做往返运动
4、如图所示,光滑水平面上有质量均为m的物块A和B,B的左侧固定一水平轻质弹簧,B原来静止。若A以速度水平向右运动,与弹簧发生相互作用,弹簧始终处在弹性限度内,弹簧弹性势能的最大值为( )
A.
B.
C.
D.
5、中国在2022年发射的实践二十一号(SJ-21)卫星,实施了一项“太空城管”的“轨道清扫”任务,捕获并拖走了一颗失效的北斗二号地球同步轨道卫星。发射地球同步卫星的过程如图所示,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )
A.卫星在同步轨道Ⅱ上的运行速度可能大于7.9km/s
B.卫星在Q点通过减速实现由轨道Ⅰ进入轨道Ⅱ
C.在轨道Ⅰ上,卫星在P点的加速度小于在Q点的加速度
D.在Q点,卫星在轨道Ⅰ时的加速度等于在轨道Ⅱ时的加速度
6、铀235是核电站的主要核燃料,核反应堆在工作时,铀235既发生裂变,也发生衰变.铀235裂变方程为:,衰变方程为:
,则下列说法正确的是( )
A.X的质量数为146,Y的电荷数为90
B.的比结合能小于
的比结合能
C.裂变过程温度升高,铀235的半衰期会变小
D.反应堆中镉棒(吸收中子)插入深一些将会加快核反应速度
7、如图所示,边长为a的等边位于竖直平面内,BC边水平,顶点A在BC边上方,电荷量分别为q、q、
三个带正电的点电荷分别固定在三角形的A、B、C三个顶点上。已知静电力常量为k,则BC边中点D处的电场强度大小为( )
A.
B.
C.
D.
8、卢瑟福的α粒子散射实验装置如图所示,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,打到金箔上,最后在环形荧光屏上产生闪烁的光点。下列说法正确的是( )
A.α粒子发生偏转是由于它跟金箔中的电子发生了碰撞
B.当α粒子接近金箔中的电子时, 电子对α粒子的吸引力使之发生明显偏转
C.通过α粒子散射实验可以估算原子核半径的数量级约为 10⁻¹⁰m
D.α粒子散射实验说明了原子中有一个带正电的核,几乎集中了原子全部的质量
9、静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力。若不计空气阻力,则在整个上升过程中,下列关于物体机械能E、速度大小v、重力势能Ep、动能Ek随时间变化的关系中,正确的是( )
A.
B.
C.
D.
10、半导体指纹传感器如图所示。当手指的指纹一面与绝缘表面接触时,指纹上凸点处与凹点处分别与半导体基板上的小极板形成正对面积相同的电容器。现使电容器的电压保持不变,手指挤压绝缘表面过程中,电容器( )
A.电容变小
B.带电量变小
C.处于充电状态
D.内部场强大小不变
11、如图所示,平行板电容器与电动势为E的直流电源(不计内阻)连接,下极板接地,开关S初始闭合,一带电油滴位于电容器中的P点且恰好处于平衡状态,下列说法正确的是( )
A.油滴带正电荷
B.将上极板向上移动一小段距离,电容器放电
C.上极板向左平移一小段距离,油滴向上运动
D.断开开关S,将下极板向下平移一小段距离,P点电势降低
12、如图所示,劲度系数为k的竖直轻弹簧固定在水平地面上。质量为m的小球从弹簧正上方高h处自由下落,当弹簧的压缩量为x时,小球到达最低点。不计空气阻力,重力加速度为g。此过程中( )
A.小球的机械能守恒
B.小球到距地面高度为时动能最大
C.小球最大动能为
D.弹簧最大弹性势能为
13、如图所示,自行车后轮、大齿轮、小齿轮的半径都不相同,关于它们边缘上的三个点A、B、C的描述,下列说法正确的是( )
A.A点和B点的线速度大小相等
B.A点的角速度大于B点的角速度
C.B点和C点运转的周期相等
D.B点和C点的线速度大小相等
14、地磁学家曾经尝试用“自激发电”假说解释地球磁场的起源,其原理如图所示:一个金属圆盘A在某一大小恒定、方向时刻沿切线方向的外力作用下,在弱的轴向磁场B中绕金属轴转动,根据法拉第电磁感应定律,盘轴与盘边之间将产生感应电动势,用一根螺旋形导线MN在圆盘下方连接盘边与盘轴,MN中就有感应电流产生,最终回路中的电流达到稳定值,磁场也达到稳定状态。下列说法正确的是( )
A.MN中的电流方向从M→N
B.MN中感应电流的磁场方向与原磁场方向相反
C.圆盘转动的速度逐渐减小
D.磁场达到稳定状态后,MN中不再产生感应电流
15、如图所示,水平放置足够长光滑金属导轨abc和de,ab与de平行并相距为L,bc是以O为圆心的半径为r的圆弧导轨,圆弧be左侧和扇形Obc内有方向如图的匀强磁场,磁感应强度均为B,a、d两端接有一个电容为C的电容器,金属杆OP的O端与e点用导线相接,P端与圆弧bc接触良好,初始时,可滑动的金属杆MN静止在平行导轨上,金属杆MN质量为m,金属杆MN和OP电阻均为R,其余电阻不计,若杆OP绕O点在匀强磁场区内以角速度ω从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )
A.杆OP产生的感应电动势恒为Bωr2
B.电容器带电量恒为
C.杆MN中的电流逐渐减小
D.杆MN向左做匀加速直线运动,加速度大小为
16、中国空间站围绕地球做近似匀速圆周运动,运行周期约为90分钟,下列说法正确的是( )
A.中国空间站的加速度大于9.8m/s2
B.中国空间站运行的角速度大于地球自转的角速度
C.中国空间站运行的速度大于第一宇宙速度
D.中国空间站与同步地球卫星的轨道高度相同
17、如图所示,一长为的轻杆的一端固定在水平转轴上,另一端固定一质量为
的小球。使轻杆随转轴在竖直平面内做角速度为
的匀速圆周运动,重力加速度为g。下列说法正确的是( )
A.小球运动到最高点时,杆对球的作用力一定向上
B.小球运动到水平位置A时,杆对球的作用力指向O点
C.若,小球通过最高点时,杆对球的作用力为零
D.小球通过最低点时,杆对球的作用力可能向下
18、如图所示,将霍尔式位移传感器置于一个沿轴正方向的磁场中,磁感应强度随位置变化关系为
(
且均为常数),霍尔元件的厚度
很小。当霍尔元件通以沿
轴正方向的恒定电流
,上、下表面会产生电势差
,则下列说法正确的是( )
A.若霍尔元件是自由电子导电,则上表面电势低于下表面
B.当物体沿轴正方向移动时,电势差
将变小
C.仅减小霍尔元件上下表面间的距离,传感器灵敏度
将变弱
D.仅减小恒定电流,传感器灵敏度
将变弱
19、如图所示,一辆小车沿水平方向行驶,物块放置在小车的水平底板上,与物块相连的竖直轻绳跨过光滑的定滑轮与小球相连,小球、物块与小车均保持相对静止,此时与小球相连的轻绳与竖直方向成一定角度,下列说法正确的是( )
A.小车可能向右做匀速直线运动
B.小车一定向右做匀加速直线运动
C.运动过程中,物块受到的静摩擦力对物块不做功
D.轻绳对小球的拉力一定大于小球的重力
20、质量为的物体
置于倾角为
的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着
与小车,
与滑轮间的细绳平行于斜面,小车以速率
水平向右做匀速直线运动,当小车与滑轮间的细绳和水平方向成夹角
时
如图
,下列判断正确的是
A.的速率为
B.的速率为
C.绳的拉力等于
D.绳的拉力小于
21、在做托里拆利实验时,玻璃管中有些残存的空气。如图若把竖直玻璃管以管顶为轴向右旋转一个较小角度,玻璃管下端仍浸没在水银中,环境温度保持不变,则管内空气柱的长度将__________;管内外水银面的高度差将__________。(选填“变大”、“变小”或“不变”)
22、小灯泡灯丝的电阻随温度的升高而变大,某同学利用实验探究这一现象.所提供的器材有:
A.电流表(A1) 量程0﹣0.6A,内阻约0.125Ω |
B.电流表(A2) 量程0﹣3A,内阻约0.025Ω |
C.电压表(V1) 量程0﹣3V,内阻约3kΩ |
D.电压表(V2) 量程0﹣15V,内阻约15kΩ |
E.滑动变阻器(R1)总阻值约10Ω
F.滑动变阻器(R2)总阻值约200Ω
G.电池(E)电动势3.0V,内阻很小
H.导线若干,电键K
该同学选择仪器,设计电路并进行实验,通过实验得到如下数据:
I/A
| 0
| 0.12
| 0.21
| 0.29
| 0.34
| 0.38
| 0.42
| 0.45
| 0.47
| 0.49
| 0.50
|
U/V
| 0
| 0.20
| 0.40
| 0.60
| 0.80
| 1.00
| 1.20
| 1.40
| 1.60
| 1.80
| 2.00
|
(1)请你推测该同学选择的器材是:电流表为 ,电压表为 ,滑动变阻器为 (以上均填写器材前面字母).
(2)请你推测该同学设计的实验电路图并画在图甲的方框中.
(3)若将该小灯泡直接接在电动势是 1.5V,内阻是 2.0Ω的电池两端,小灯泡的实际功率为 W.
23、一列有8节车厢的动车组列车,沿列车前进方向看,每两节车厢中有一节自带动力的车厢(动车)和一节不带动力的车厢(拖车)。该动车组列车在水平铁轨上匀加速行驶时,设每节动车的动力装置均提供大小为F的牵引力,每节车厢所受的阻力均为f,每节车厢总质量均为m,则第6节车厢与第7节车厢水平连接装置之间的相互作用力大小为_______。
24、一列机械波以5m/s的速度,沿x轴负方向传播。在t1=0时,波形图如图所示,P、Q质点的平衡位置分别为1.0m、2.0m。则质点P振动的周期T= ___________s;t2=0.35s时,质点Q的振动方向为y轴___________方向(填“正”或“负”);t3=0.45s时,质点P的加速度大小___________(填“大于”、“等于”或“小于”)质点Q的加速度大小。
25、望远系统的光学结构特点是光学间隔为________。
26、如图所示为一定质量的理想气体经历两个绝热和两个等容的循环过程的p-V图像,则该气体在状态a时的内能___________(填“等于”“大于”或“小于”)状态c时的内能;在一次循环过程中吸收的热量___________(填“等于”“大于”或“小于”)放出的热量。
27、研究光电效应规律的实验装置如图甲所示,以频率为的光照射光电管电极K时,有光电子产生。光电管K、A极间所加的电压
可由图中的电压表测出,光电流
由图中电流计测出。
(1)当滑片P位于P′右侧时,电极K、A间所加电压使从电极K发出的光电子_________(填“加速”或“减速”)。
(2)如果实验所得图像如图乙所示,其中
、
、
为已知量,电子的电荷量为
,那么:
①要证实“光电效应方程”是正确的,需要从乙图中数据求出___________值(用题中给出的已知量表示)与普朗克常量进行比较,若在误差许可的范围内二者相等则证实“光电效应方程”是正确的。
②该实验所用光电管的K极材料的逸出功为________________。
28、某人利用智能手机中的加速度传感器研究升降机的运行情况。将手机平放在某升降机地板上,启动升降机,记录升降机沿竖直方向运动的加速度值(为尽量准确反映升降机运行情况,数据采样率设置为,也就是每秒读取100次数据,实验持续时间总共约
,数据总共有6000组左右,利用excel表格处理数据得到升降机运行的加速度随时间变化图像)。如图是升降机从31楼下降到1楼的加速度一时间图像。已知升降机(含载体)质量为
,不考虑摩擦,认为升降机轿厢是由一根钢缆绳拉着沿竖直方向运动,重力加速度g取
。求:
(1)升降机轿厢所受钢缆绳的最大拉力;
(2)升降机在运动过程中的最大速度;
(3)升降机下降的高度约为多少米?
29、如图所示,质量为1kg的小物块以10m/s的速度从倾角为37°的固定斜面(足够长)底端向上滑行,物体与斜面间的动摩擦因数为0.5,重力加速度g,取10m/s2,sin37°=0.6,cos37°=0.8,求:
(1)物块沿斜面向上滑行的最长时间;
(2)物块从最高点滑回到底端时的动能。
30、如图甲所示,在纸面内有-平面直角坐标系xOz,整个空间分布区域足够大的匀强磁场,其磁感强度大小为B,方向垂直于纸面向外。一个质量为m、带电量为q的正粒子从坐标原点O以初速度v沿x轴正方向射入,不计粒子的重力,请回答下列问题:
(1)为使该粒子能沿x轴做匀速直线运动,可再加一匀强电场,求该电场电场强度的大小;
(2)若撤去第(1)中的匀强电场,但改变磁感应强度的大小,使粒子恰好能经过图甲中位置坐标为(x=3l,z=-l)的点,则改变后的磁感应强度B'为多大?
(3)在甲图的坐标原点O处,再新加一垂直于纸面向里的y轴,如图乙所示(立体图),保持原磁感应强度B不变,将电场强度大小调整为E',方向调整为平行于yOz平面且与y轴正方向成某个夹角θ。若使得该粒子能够在xOy平面内做类平抛运动(沿x轴正方向做匀速直线运动,沿y轴正方向做初速度为零的匀加速直线运动),并经过图乙中位置坐标为(x=3l,y=l,z=0)的点,求E'的大小和tanθ各为多少?
31、ETC是高速公路上不停车电子收费系统的简称.如图所示,汽车以16m/s的速度行驶,如果过人工收费通道,需要在收费站中心线处减速至0,经过20s缴费后,再加速至16m/s行驶;如果经过ETC通道,需要在中心线前方12m处减速至6m/s,匀速到达中心线后,再加速至16m/s行驶.设汽车加速和减速的加速度大小均为2m/s2.
(1)若汽车过人工收费通道,求:
a.距离中心线多远处开始减速?这段过程经过多长的时间?
b.从收费前减速开始,到收费后加速到16m/s结束,总共经过的位移多大?需要多长时间?
(2)若汽车过ETC通道,求:
a.距离中心线多远处开始减速?这段过程经过多长的时间?
b.汽车过ETC通道时,经过(1)问中同一段位移能够节约多长时间?
32、如图所示,在倾角为θ=的光滑斜面上,有一长为l=1m的细线,细线的一端固定在O点,另一端拴一质量为m=2kg的小球,小球恰好能在斜面上做完整的圆周运动,己知O点到斜面底边的距离为L=3m,g取10m/s2。若小球运动到最低点B时细线刚好断裂,求:
(1)细线能够承受的最大拉力;
(2)细线断裂后,小球继续运动到斜面底边时到C点的距离。(C点为AB连线与底边的交点,斜面底边与AC垂直)