1、甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员( )
| 甲 | 乙 | 丙 | 丁 |
8 | 9 | 9 | 8 | |
1 | 1 |
A.甲 B.乙 C.丙 D.丁
2、下列各点中,在直线上的点是( )
A.
B.
C.
D.
3、如图,数轴上表示1、的对应点分别为A、B,点B关于A点对称点为C,则点C所表示的数为( )
A. -1 B. 1-
C. 2-
D.
-2
4、下列运算正确的是( )
A.
B.
C.
D.
5、若点A(-1,a),B(-4,b)在一次函数y=-2x-3图象上,则a与b的大小关系是( )
A.a<b
B.a>b
C.a=b
D.无法确定
6、如图,数字代表所在正方形的面积,则所代表的正方形的面积为( )
A.5
B.25
C.27
D.
7、如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为( )
A.96 B.48 C.60 D.30
8、如图,点是
内任意一点,且
,点
和点
分别是射线
和射线
上的动点,当
周长取最小值时,则
的度数为( )
A.145° B.110° C.100° D.70°
9、如图ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是 ( ).
A.AC⊥BD
B.∠ABC=90°
C.OA=OB=OC=OD
D.AC=BD
10、如图,在中,
,点
都在边
上,
,若
,则
的长为__________.
11、如图,在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM.如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是_____.
12、若关于x的一元一次不等式组的解集为﹣3≤x<
,则ba=_____.
13、在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简﹣|c﹣a﹣b|的结果 .
14、已知和
关于y轴对称,则
的值为_____.
15、某班级若干名同学星期天去公园游览,公园票价元
人,团体
人以上(含
人)8折优惠,他们发现买团体票比买单人票便宜,则他们至少有___________人
16、若一次函数y=-2x+1的图象经过平移后经过点(2,5),则需将此图象向 平移 单位.
17、我国古代数学著作《九章算术》中的一个问题:一根竹子高 1 丈(1 丈=10 尺),折断后顶端落在离竹子底端 3 尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为 x 尺,根据题意,可列出关于 x 方程为:__________.
18、如下图,已知:中,
,
,
平分
交
于
,
,则
点到
的距离是__________.
19、2019新型冠状病毒(2019﹣mCoV),2020年1月12日被世界卫生组织命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000215米.则数据0.000000215用科学记数法表示为_____.
20、如图,已知△ABC 的三个顶点坐标分别是 A(2,﹣1),B(1,﹣2),C(3,﹣3)
(1)将△ABC 向上平移 4 个单位长度得到△A1B1C1,请画出△A1B1C1;
(2)请写出 B1坐标,并用恰当的方式表示线段 BB1上任意一点的坐标;
(3)求△ABC 的面积.
21、解答:
(1)师大一中第二十届运动会开幕式中大型团体操表演《锦绣中国》令人倍感震越,印象深刻,据了解,这场表演共800名同学参加演出,道具选用红黄两色绵绣手幅,已知黄色手幅4元/个;红色手幅2.5元/个;道具总共2420元,那么两幅各多少个?
(2)本次运动会吉样物名“锦秀”,意为锦江一枝独秀,学校计划制作1000个吉样物作为运动会纪念,现有甲乙两个工厂可以生产“锦秀”,甲工厂报价:不超过400个时20元/个,400个以上超过部分打7折,但因生产条件限制,截止10月24日运动会开幕只能完成800个;乙工厂报价18元/个,但需运费400元.问:怎样安排生产可使总花费最少?最少多少钱?
22、求下列各式中的:
(1); (2)
.
23、解分式方程:.
24、为实施农村医疗卫生改革,计划在甲村、乙村之间建一座定点医疗站P,甲、乙两村坐落在两相交公路内,如图所示.医疗站位置必须满足下列条件:
(1)使其到两条公路距离相等;
(2)到甲、乙两村的距离也相等.请你通过作图确定点P的位置.(要求尺规作图,保留痕迹,不写作法,用黑色水性笔把痕迹再描清楚)