1、如图所示,某同学用拖把擦地板,他用力使拖把沿水平地板向前移动一段距离,在此过程中( )
A.该同学对拖把做负功
B.地板对拖把的摩擦力做负功
C.地板对拖把的支持力做负功
D.地板对拖把的支持力做正功
2、如图所示,O是带电量相等的两个正点电荷连线的中点,a、b是两电荷连线中垂线上位于O点上方的任意两点,下列关于a、b两点电场强度和电势的说法中,一定正确的是( )
A.Ea>Eb
B.Ea<Eb
C.φa>φb
D.φa<φb
3、在光滑水平面上的O点系一绝缘细线,线的另一端系一带正电的小球。当沿细线方向加上一匀强电场后,小球处于平衡状态。若给小球一垂直于细线的很小的初速度v0,使小球在水平上开始运动,则小球的运动情况与下列情境中小球运动情况类似的是(各情境中,小球均由静止释放)( )
A.
B.
C.
D.
4、“中国快舟”系列飞船的成功发射,再次展现中国航天的大国力量。若将飞船的发射简化成质点做直线运动模型,其运动的v-t图像如图所示。关于飞船的运动,下列说法正确的是( )
A.t3时刻加速度为零
B. 时间内为静止
C.时间内为匀加速直线运动
D.与
时间内加速度方向相同
5、一太阳能电池板的电动势为0.80V,内阻为20Ω将该电池板与一阻值为140Ω的电阻连成闭合电路,该闭合电路的路端电压为( )
A.0.80V
B.0.70V
C.0.60V
D.0.50V
6、如图所示,匀强磁场中有一等边三角形线框abc,匀质导体棒在线框上向右匀速运动。导体棒在线框接触点之间的感应电动势为E,通过的电流为I。忽略线框的电阻,且导体棒与线框接触良好,则导体棒( )
A.从位置①到②的过程中,E增大、I增大
B.经过位置②时,E最大、I为零
C.从位置②到③的过程中,E减小、I不变
D.从位置①到③的过程中,E和I都保持不变
7、如图所示的电场中,实线表示电场线,虚线表示等差等势面, A、B、C为电场中的三个点。下列正确的( )
A.A点电势比B点高
B.A点场强比B点小
C.负电荷在A点的电势能比在B点的电势能大
D.B点和C点间的电势差是C点和A点间电势差的2倍
8、倾角为 的斜面上,有质量为m,同一材质制成的均匀光滑金属圆环,其直径 d恰好等于平行金属导轨的内侧宽度。如图,电源提供电流 I,圆环和轨道接触良好。下面的匀强磁场,能使圆环保持静止的是( )
A.磁场方向垂直于斜面向上,磁感应强度大小等于
B.磁场方向垂直于斜面向下,磁感应强度大小等于
C.磁场方向竖直向下,磁感应强度大小等于
D.磁场方向竖直向上,磁感应强度大小等于
9、某地有一风力发电机,它的叶片转动时可形成半径为20m的圆面。某时间内该地区的风向恰好跟叶片转动的圆面垂直,已知空气的密度为1.2kg/m3,假如这个风力发电机能将此圆内空气动能的10%转化为电能,若该风力发电机的发电功率约为1.63×104W,则该地区的风速约为( )
A.10m/s
B.8m/s
C.6m/s
D.4m/s
10、一质量为2kg的物体,在水平力的作用下沿水平面做匀速直线运动。已知物体与水平面间的动摩擦因数为0.2,则水平面对物体的摩擦力大小为( )
A.0.1N
B.0.4N
C.4N
D.10N
11、如图所示,两光滑平行导轨倾斜放置,与水平地面成一定夹角,上端接一电容器(耐压值足够大).导轨上有一导体棒平行地面放置,导体棒离地面的有足够的高度,匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电.将导体棒由静止释放,整个电路电阻不计,则 ( )
A.导体棒一直做匀加速直线运动
B.导体棒先做加速运动,后作减速运动
C.导体棒先做加速运动,后作匀速运动
D.导体棒下落中减少的重力势能转化为动能,机械能守恒
12、利用电磁感应驱动的电磁炮,原理示意图如图甲所示,高压直流电源电动势为E,大电容器的电容为C。套在中空的塑料管上,管内光滑,将直径略小于管的内径的金属小球静置于管内线圈右侧。首先将开关S接1,使电容器完全充电,然后将S转接2,此后电容器放电,通过线圈的电流随时间的变化规律如图乙所示,金属小球在的时间内被加速发射出去(
时刻刚好运动到右侧管口)。下列关于该电磁炮的说法正确的是( )
A.小球在塑料管中的加速度随线圈中电流的增大而增大
B.在的时间内,电容器储存的电能全部转化为小球的动能
C.适当加长塑料管可使小球获得更大的速度
D.在的时间内,顺着发射方向看小球中产生的涡流沿逆时针方向
13、如图所示,质量为M、电阻为R、长为L的导体棒,通过两根长均为l、质量不计的导电细杆连在等高的两固定点上,固定点间距也为L。细杆通过开关S可与直流电源或理想二极管串接。在导体棒所在空间存在磁感应强度方向竖直向上、大小为B的匀强磁场,不计空气阻力和其它电阻。开关S接1,当导体棒静止时,细杆与竖直方向的夹角固定点
;然后开关S接2,棒从右侧开始运动完成一次振动的过程中( )
A.电源电动势
B.棒消耗的焦耳热
C.从左向右运动时,最大摆角小于
D.棒两次过最低点时感应电动势大小相等
14、某种除颤器的简化电路,由低压直流电源经过电压变换器变成高压电,然后整流成几千伏的直流高压电,对电容器充电,如图甲所示。除颤时,经过电感等元件将脉冲电流(如图乙所示)作用于心脏,实施电击治疗,使心脏恢复窦性心律。某次除颤过程中将电容为的电容器充电至
,电容器在时间
内放电至两极板间的电压为0。其他条件不变时,下列说法正确的是( )
A.线圈的自感系数L越大,放电脉冲电流的峰值越小
B.线圈的自感系数L越小,放电脉冲电流的放电时间越长
C.电容器的电容C越小,电容器的放电时间越长
D.在该次除颤过程中,流经人体的电荷量约为
15、2021年12月9日,神舟十三号乘组进行天宫授课,如图为航天员叶光富试图借助吹气完成失重状态下转身动作的实验,但未能成功。若他在1s内以20m/s的速度呼出质量约1g的气体,可获得的反冲力大小约为( )
A.0.01N
B.0.02N
C.0.1N
D.0.2N
16、如图所示,把两个线圈绕在同一个矩形软铁芯上,线圈通过导线、开关与电池连接,线圈
用导线连通,导线下面平行放置一个可以自由转动的小磁针,且导线沿南北方向放置。下列说法正确的是( )
A.开关闭合的瞬间,小磁针不会转动
B.开关闭合,待电路稳定后,小磁针会转动
C.电路稳定后,断开开关的瞬间,小磁针不会转动
D.电路稳定后,断开开关的瞬间,小磁针会转动
17、在足球比赛中,关于运动员与足球之间的力,下列说法正确的是( )
A.运动员先给足球作用力,足球后给运动员作用力
B.运动员给足球的力与足球给运动员的力大小相等
C.运动员给足球的力与足球给运动员的力是一对平衡力
D.运动员给足球的力与足球给运动员的力不在同一条直线上
18、如图所示,带有活塞的汽缸中封闭着一定质量的气体(不考虑分子势能).将一个热敏电阻(电阻值随温度升高而减小)置于汽缸中,热敏电阻与汽缸外的欧姆表连接,汽缸和活塞均具有良好的绝热性能.下列说法正确的是( )
A.若拉动活塞使汽缸内气体体积增大,需加一定的拉力,说明气体分子间有引力
B.若拉动活塞使汽缸内气体体积增大,则欧姆表读数将变小
C.若发现欧姆表读数变大,则汽缸内气体内能一定增大
D.若发现欧姆表读数变大,则汽缸内气体内能一定减小
19、心室纤颤是一种可能危及生命的疾病。有一种叫作心脏除颤器的医疗设备,其工作原理是通过一个充电的电容器对心室纤颤患者皮肤上安装的两个电极板放电,让一定量的电荷通过心脏,使其心脏短暂停止跳动,再刺激心室纤颤患者的心脏恢复正常跳动。若心脏除颤器的电容器电容为15μF,充电至9.0kV电压,则此次放电前该电容器存储的电荷量为( )
A.0.135C
B.135C
C.6×108C
D.1.7×10-9C
20、麦克斯在前人研究的基础上,创造性地建立了经典电磁场理论,进一步揭示了电现象与磁现象之间的联系。他大胆地假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场。以平行板电容器为例:圆形平行板电容器在充、放电的过程中,板间电场发生变化,产生的磁场相当于一连接两板的板间直导线通以充、放电电流时所产生的磁场。如图所示,若某时刻连接电容器的导线具有向上的电流,则下列说法中正确的是( )
A.电容器正在放电
B.两平行板间的电场强度E在增大
C.该变化电场产生顺时针方向(俯视)的磁场
D.两极板间电场最强时,板间电场产生的磁场达到最大值
21、颠球是足球运动基本技术之一,若质量为400g的足球用脚颠起后,竖直向下以4m/s的速度落至水平地面上,再以3m/s的速度反向弹回,取竖直向上为正方向,在足球与地面接触的时间内,关于足球动量变化量△p和合外力对足球做的功W,下列判断正确的是( )
A.△p=1.4kg·m/s W=-1.4J
B.△p=-1.4kg·m/s W=1.4J
C.△p=2.8kg·m/s W=-1.4J
D.△p=-2.8kg·m/s W=1.4J
22、汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。设转弯时汽车所受的合外力为F,关于本次转弯,下列图示可能正确的是( )
A.
B.
C.
D.
23、如图所示,A、B为不同轨道地球卫星,轨道半径,质量
,A、B运行周期分别为TA和TB,受到地球万有引力大小分别为
和
,下列关系正确的是( )
A.
B.
C.
D.
24、一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2m/s,下列说法正确的是( )
A.手对物体做功10J
B.合外力对物体做功2J
C.合外力对物体做功12J
D.物体克服重力做功12J
25、汽车以的速度行驶,刹车后加速度大小为
,从刹车开始,经过3s时间汽车通过的距离为___________m.
26、如图是实验“用DIS研究回路中感应电动势大小与磁通量变化快慢的关系”的装置图。在这个实验过程中,我们测得的感应电动势是________(选填:“平均值”或“瞬时值”),小车从不同位置下滑时,螺线管中磁通量的变化量是________(选填:“相同的”或“不同的”)。
27、月球中心与地球中心之间的距离约为地球半径的60倍,两者质量之比.由地球飞往月球的火箭飞到离月球的距离=___________
时,火箭中的人感到不受“重力”作用.
28、在高速运动的飞船中的宇航员会发现飞船中的时钟与他观察到的地球上的时钟,________上的钟更快。
29、在“用油膜法估测分子大小”实验中,油酸酒精溶液浓度为A,记下N滴溶液总体积为V,则一滴油酸酒精溶液中纯油酸的体积V油酸=____;在透明方格纸板上数得一滴油酸酒精溶液形成的油膜占有的正方形小格个数为X,已知小格的边长为a,则油酸分子直径D=____.
30、在电磁波发射技术中,使电磁波随各种信号而改变的技术叫做调谐(______)
31、某同学利用如图甲所示的装置测量某种单色光的波长。实验时,接通电源使光源发光,调整光路,使得从目镜中可以观察到干涉条纹。回答下列问题:
(1)该同学从目镜中观察到干涉条纹,若想使干涉条纹更宽一些,可以_______(填选项前面的字母)
A.减小单缝与双缝之间的距离
B.使用间距更小的双缝做实验
C.换用频率更大的单色光做实验
D.增大光源的光照强度
(2)若双缝的间距为d,屏与双缝间的距离为l,转动测量头的手轮当分划板的中心刻线对准第1条亮纹的中心时读数为x1,对准第5条亮纹的中心时读数为x2。写出计算波长的表达式λ=_______(利用给出的字母表示)。
(3)若已知双缝间距d=2.0×10-4m,双缝到屏的距离l=0.9m,x1=2.000mm,x2的读数如图乙所示,则x2=_______mm。
(4)根据已知数据和测得的数据,求解得到该单色光的波长λ=_______nm(结果保留三位有效数字)。
32、阿尔法磁谱仪(简称AMS)是美籍华裔物理学家丁肇中构思,由中国参与建造的探测反物质和暗物质的仪器。图甲是AMS在空间站的实验场景,其工作原理可简化为如图乙所示:在xoy平面内,以M(0,-R)为圆心、R为半径的圆形区域内有垂直纸面向里的匀强磁场,在的区域内有垂直纸面向外的匀强磁场,两区域磁场的磁感应强度大小相等。在第一象限有与x轴成45°角倾斜放置的接收器与x、y轴交于Q、P两点,且OQ间距为
。在圆形磁场区域左侧
的区域内,均匀分布着质量为m、电荷量为e的一簇质子,所有质子均以速度v沿x轴正向射入圆形磁场区域,其中正对M点射入的质子经偏转后从O点进入x轴上方的磁场。不计质子的重力,不考虑质子间的相互作用。求:
(1)磁感应强度B的大小;
(2)正对M点射入的质子,射入磁场后经多长时间到达接收器PQ;
(3)接收器PQ被质子打中的区域的长度。
33、如图所示,竖直虚线MN的右侧存在匀强磁场,虚线左侧有一平行板电容器A、B,板间距离d=12 cm,板与水平面夹角θ=37°,两板所加电压U=120 V,B板电势高,现有一带电荷量为q=-3×10-3 C的带电液滴,以=1 m/s的水平速度从A板上边缘水平进人电场,恰好沿水平方向运动并恰好从B板的下边缘水平飞出,液滴进入磁场后仍沿水平方向运动,sin37°=0.6,cos37°=0.8,g=10m/s².电场和磁场互不影响,求:
(1)液滴的质量;
(2)液滴飞出电场时的速度大小及它在电场中运动的时间;
(3)匀强磁场的方向和场强B的大小.
34、如图所示,在竖直平面内建立xOy坐标系,在范围内同时存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场。一个质量为
、带电量为
的小球从y轴上高度为0.6m处以
水平向右抛出,小球进入磁场后速率保持不变,轨迹恰好与x轴相切,与y轴平行的MN是足够长的探测板,其横坐标位置可调。已知小球与探测板的碰撞是弹性碰撞,g取10m/s,求:
(1)电场强度E和磁感应强度B的大小;
(2)若小球垂直打中探测板,求探测板的横坐标位置;
(3)若小球垂直打中探测板,小球能否回到出发点?若不能,请说明理由;若能,请计算出全过程所用的时间。
35、如图所示,有一足够长斜面,倾角,一小物块从斜面顶端A处由静止下滑,到B处后,受一与物体重力大小相等的水平向右恒力作用,物体最终停在C点(C点未画出)。若
.物块与斜面间动摩擦因素
,
,
,
求:(1)物体到达B点的速度多大?
(2)BC距离多大?
36、如图所示,在长度足够长、宽度的区域
内有垂直纸面向里的匀强磁场,磁感应强度
,水平边界
上方存在范围足够大的竖直向上的匀强电场,电场强度
,现有大量质量
、电荷量
的带负电的粒子,同时从边界
上的O点沿纸面向各个方向垂直射入磁场,射入时的速度大小均为
.不计粒子的重力和粒子间的相互作用力。
(1)求带电粒子在磁场中运动的半径r;
(2)求与x轴负方向成60°角射入的粒子在电场中运动的时间t;
(3)当从边界上最左边射出的粒子离开磁场时,求仍在磁场中运动的粒子的初速度方向与x轴正方向的夹角范围。