1、如图所示的正四棱锥,底面为正方形
,其中
,a、b两点分别固定两个等量的异种点电荷,现将一带电荷量为
的正试探电荷从O点移到c点,此过程中电场力做功为
。选无穷远处的电势为零。则下列说法正确的是( )
A.a点固定的是负电荷
B.O点的电场强度方向平行于
C.c点的电势为
D.将电子由O点移动到d,电势能增加
2、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
3、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
4、如图所示,理想变压器原、副线圈接有额定电压均为20V的灯泡A和B,当输入u=220sin100πt(V)的交流电时,两灯泡均能正常发光,假设灯泡不会被烧坏,下列说法正确的是( )
A.原、副线圈匝数比为11:1
B.原、副线圈中电流的频率比为10:1
C.当滑动变阻器的滑片向上滑少许时,灯泡B变暗
D.当滑动变阻器的滑片向下滑少许时,灯泡A变亮
5、如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角,一重为
的物体悬挂在横杆中点,则每根斜杆受到地面的( )
A.作用力为
B.作用力为
C.摩擦力为
D.摩擦力为
6、如图所示,某健身者右手拉着抓把沿图示位置A水平缓慢移动到位置B,他始终保持静止不计绳子质量,忽略绳子和重物与所有构件间的摩擦,则重物下移过程( )
A.绳子的拉力逐渐增大
B.该健身者所受合力逐渐减小
C.该健身者对地面的压力不变
D.该健身者对地面的摩擦力逐渐减小
7、如图所示,在倾角=37°的斜面底端的正上方 H 处,平抛一个物体,该物体落到斜面上的速度方向正好与斜面垂直,则物体抛出时的初速度v为 ( )
A.
B.
C.
D.
8、渔船上的声呐利用超声波来探测远方鱼群的方位。某渔船发出的一列沿轴传播的超声波在
时的波动图像如图甲所示,图乙为质点
的振动图像,则( )
A.该波沿轴正方向传播
B.若遇到3m的障碍物,该波能发生明显的衍射现象
C.该波的传播速率为0.25m/s
D.经过0.5s,质点沿波的传播方向移动2m
9、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
10、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
11、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
12、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
13、如图所示,有一质量为m的物块分别与轻绳P和轻弹簧Q相连,其中轻绳P竖直,轻弹簧Q与竖直方向的夹角为,重力加速度大小为g,则下列说法正确的是( )
A.轻绳P的弹力大小可能小于mg
B.弹簧Q可能处于压缩状态
C.剪断轻绳瞬间,物块的加速度大小为g
D.剪断轻绳瞬间,物块的加速度大小为gsin
14、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
15、光滑水平面上放有一上表面光滑、倾角为α的斜面A,斜面质量为M,底边长为 L,如图所示。将一质量为m的可视为质点的滑块B从斜面的顶端由静止释放,滑块B经过时间t刚好滑到斜面底端。此过程中斜面对滑块的支持力大小为,则下列说法中正确的是( )
A.
B.滑块下滑过程中支持力对B的冲量大小为
C.滑块到达斜面底端时的动能为
D.此过程中斜面向左滑动的距离为
16、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
17、冰壶甲以速度v0被推出后做匀变速直线运动,滑行一段距离后与冰壶乙碰撞,碰撞后冰壶甲立即停止运动。以下图像中能正确表示冰壶甲运动过程的是图像( )
A.
B.
C.
D.
18、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
19、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
20、如图所示,天花板上悬挂的电风扇绕竖直轴匀速转动,竖直轴的延长线与水平地板的交点为O,扇叶外侧边缘转动的半径为R,距水平地板的高度为h。若电风扇转动过程中,某时刻扇叶外侧边缘脱落一小碎片,小碎片落地点到O点的距离为L,重力加速度为g,不计空气阻力,则电风扇转动的角速度为( )
A.
B.
C.
D.
21、如图,一个带电小球,电量大小为q,质量为m,用绝缘丝线悬挂在水平天花板上。当它处于斜向下与水平方向成θ角的匀强电场中,小球平衡时丝线恰好与水平方向成θ角。重力加速度为g,则小球带________电(选填“正”或“负”),则此电场强度的大小为__________。
22、一个半圆柱体玻璃砖的横截面是半径为R的半圆,AB为半圆的直径,O为圆心,如图所示。一束关于O点对称的平行光垂直射向玻璃砖的下表面,入射光束在AB上的最大宽度为R,距离O点最远的光线到达上表面后恰好发生全反射,则该玻璃砖的折射率为________。若另一细光束在O点左侧垂直于AB从圆弧表面射入此玻璃砖,细光束到O点的水平距离为,不考虑反射的情况,此光线从玻璃砖射出的位置与O点的距离为________(计算结果保留两位有效数字)。
23、密封食品直接利用微波炉加热时容易出现炸开现象,原因是包装袋内部温度急剧升高时,内部气体压强增大。所以在加热食物时,必须留一些透气孔,缓慢加热时,内部气体压强______(填“大于”、“小于”或“等于”)外界气体压强,此过程内部气体单位体积内分子个数______(填“增大”、“减小”或“不变”)。
24、(1)如图所示,是医院用于静脉注射的示意图,倒置的输液瓶上方有一气室E,密封的瓶口处的软塞上插有两根细管,其中A管与大气相通,B管为输液软管,中间又有一滴壶C,而其D端则通过针头接入人体静脉。若气室E、滴壶C中的气体压强分别为pE、pC,则pE___________pC(选填“大于”“小于”“等于”);输液过程中,在输液瓶悬挂高度与输液软管的内径确定的情况下,药液液滴的滴注速度是___________(选填“越滴越快”“越滴越慢”“恒定”)。
25、一定质量的理想气体,从状态A开始经历AB、BC、CA三个过程又回到状态A,气体的密度、压强p的关系图像如图所示,AB的反向延长线经过坐标原点O,BC、AC分别与纵轴、横轴平行,则气体从状态A到状态B温度______(填“升高”“降低”“不变”),从状态B到状态C______热(填“吸”“放”)。
26、真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为_______。
27、在完成了《探究加速度与力、质量之间的关系》的书本实验后,某同学想办法设计了一个新的实验用于进一步验证上述物理量的关系,具体操作过程如下:
A.用天平称出小车质量为,弹簧秤质量
。(g取
)
B.接通打点计时器电源,让小车M从一具有一定倾角的平整斜面上由静止开始加速下滑,用纸带记录下它的运动情况,以便求出他的加速度
。
C.撤掉打点计时器,在小车尾部用细线与一个弹簧秤和水桶连接,在水桶中加入适当水量,使轻推小车时,能使其沿斜面向下做匀速直线运动。当小车到达斜面底部静止后,读出此时弹簧秤的读数F。
D.改变斜面的倾角,重复以上实验几次,通过几组数据来验证三个物理量之间的关系。
请回答下列问题:
(1)下面这条纸带,是在某次实验中得到的(每5个点取一个计数点),请你求出此时小车的加速度_______________。
(2)小车由静止开始匀加速下滑过程中所受到的合力为_______。(用本题中所给的物理量符号表示)
(3) 在该同学的这个验证实验中,_________(填“需要”或“不需要”)保证小车质量远大于所挂物体的总质量。
28、如图所示,两个导热气缸竖直放置,底部由一细管连通(忽略细管的容积)。两气缸内各有一个活塞,左边气缸内活塞质量为2m,右边气缸内活塞质量为m,活塞与气缸无摩擦,活塞的厚度可忽略。活塞的下方为理想气体,上方为真空。当气体处于平衡状态时,两活塞位于同一高度h,活塞离气缸顶部距离为2h,环境温度为T0。
(i)若在右边活塞上放一质量为m的物块,求气体再次达到平衡后两活塞的高度差(假定环境温度始终保持为T0);
(ii)在达到上一问的终态后,环境温度由T0缓慢上升到5T0,求气体再次达到平衡后两活塞的高度差。
29、离子光学是一门研究离子在电磁场中运动和离子束在电磁场中聚焦、反射、折射、偏转等规律的学科。利用中学知识,也可以简单地构造一些离子光学的元器件,来实现离子束的反射,平移和折射等。某同学设计简化装置如图所示。在反射区,以O点为原点,建立平面直角坐标系xOy,在第一象限分布着磁感应强度为B1=1T的匀强磁场,磁场方向垂直于纸面向里,OM是磁场中的一块挡板,与x轴夹角为30°;平移区由磁场方向垂直纸面向外、磁感应强度为B2=0.5T、磁场宽度为L1=×10−4m的磁场2区,宽度为L2=
×10−4m的自由空间,磁场方向垂直纸面向里、磁场宽度为L3=
×10−4m的磁场3区组成,2区磁场上边界与x轴相距L=
×10−4m;折射区,存在一电场,圆形区域外部各处电势均为φ1,内部各处电势均为φ2(φ1<φ2),φ2-φ1=0.2V,球心位于O′点,离子只受到法线方向的作用力,其运动方向将发生改变,即发生“折射”,改变前后能量守恒。一直线性相当好的离子束以大小为v=2×103m/s的速度沿纸面从x轴(x>0)上A点向左上方射入磁场,速度与x轴成30°角。已知离子的质量为m=8×10−27kg,带电量为q=−1.6×10−9C,不计离子的重力。
(1)已知从A点入射的离子束,恰好不会碰到OM板,而从x轴上的另一点B射出磁场,求A点和B点的横坐标;
(2)满足(1)的条件下,从反射区B点射出的离子束,在真空中自由飞行一段时间后,从C点进入磁场2区,从磁场3区的D点射出。为保证C点入射方向与D点出射方向平行,求3区磁场磁感应强度B3的大小以及C点的横坐标;
(3)满足(2)的条件下,从D点出射的离子束从圆形区域的顶部E点进入圆形区域内部。若每秒钟有N=102个离子从A点射出,求离子束在E处对折射装置的作用力大小。
30、如图所示,一圆柱形玻璃砖,底面半径为,高为
,与水平方向夹角为
的光线从玻璃砖上底面圆心
处射入玻璃砖,光线在玻璃砖中反射一次后恰好从下底面的圆心
处射出玻璃砖。已知光在真空中传播速度为
,求:
(1)玻璃砖的折射率;
(2)光线在玻璃砖中传播的时间。
31、如图,光滑曲面轨道在O点与光滑水平地面平滑连接,地面上静止放置一各表面光滑、质量为3m的斜面体C,一质量为m的小物块A从高h处由静止开始沿轨道下滑,在O点与质量为m的静止小物块B发生碰撞,碰撞后A、B立即粘连在一起向右运动(碰撞时间极短),平滑地滑上斜面体,在斜面体上上升的高度小于斜面体高度。求:
(1)A和B碰撞过程中B受的合力的冲量大小;
(2)斜面体C获得的最大速度。
32、如图所示,甲、乙两滑块的质量分别为1kg、2kg,放在静止的足够长的水平传送带上,两者相距2m,与传送带间的动摩擦因数均为0.2。t=0时,甲、乙分别以6m/s、2m/s的初速度开始沿同一直线向右滑行。重力加速度g取10m/s2,求:
(1)甲、乙经过多长时间发生碰撞;
(2)甲、乙发生弹性碰撞(碰撞时间极短),则两滑块最终静止时,相距的距离为多大;
(3)若从t=0时,传送带以v0=4m/s的速度向右做匀速直线运动,求在0~1s内,电动机为维持传送带匀速运动而多做的功。