1、估计的值( )
A.在6和7之间
B.在5和6之间
C.在3和4之间
D.在2和3之间
2、要使分式有意义,则
应满足( )
A.
B.
C.
D.
3、下列二次根式是最简二次根式的是( )
A.
B.
C.
D.
4、抛物线的顶点坐标是( )
A. (3, -5) B. (-3, 5) C. (3, 5) D. (-3, -5)
5、如图,已知直线,且
,
,
,
( )
A.14
B.15
C.16
D.9
6、如图是变量y与x之间的函数图像,则函数y的取值范围是( )
A.
B.
C.
D.
7、点(﹣3,﹣2)关于x轴的对称点是( )
A.(3,﹣2)
B.(﹣3,2)
C.(3,2)
D.(﹣2,﹣3)
8、一次函数y=kx+b(k,b为常数,且k≠0)的图像如图所示,根据图像信息可求得关于x的方程kx+b=0的解为( )
A.x=-1
B.x=2
C.x=0
D.x=3
9、深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x,可列方程为( )
A.8(1﹣x)=5.12 B.8(1+x)2=5.12
C.8(1﹣x)2=5.12 D.5.12(1+x)2=8
10、在实数, -
,-3.14,0,
中,无理数有 ( )
A.1个
B.2个
C.3个
D.4个
11、不等式组的解集是_____.
12、幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.九宫图中
________.
13、已知:在中,
,
于点
,点
在直线
上,
,
,
,则
的面积是______.
14、正比列函数,当
的取值范围是
,那么
的取值范围是__________.
15、如图,等边△ABC中,AD是中线,AD=AE,则∠ADE=______.
16、一个猜想是否正确,科学家们要经过反复的论证表是几位科学家“掷硬币”的实验数据:
实验者 | 德 | 蒲丰 | 费勒 | 皮尔逊 | 罗曼诺夫斯基 |
掷币次数 | 6 140 | 4 040 | 10 000 | 36 000 | 80 640 |
出现“正面朝上”的次数 | 3 109 | 2 048 | 4 979 | 18 031 | 39 699 |
频率 |
请根据以上数据,估计硬币出现“正面朝上”的概率为______精确到
.
17、已知:如图,于点
,
于点
,
,求证:
平分
.
18、如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.
(1)在图中画出△DEF;
(2)点E是否在直线OA上?为什么?
(3)△OAB与△DEF______位似图形(填“是”或“不是”)
19、(1)计算:
(2)化简:
20、如图所示,直线a、b被c、d所截,且a⊥c,b⊥c,∠1=70°,求∠3的度数.
21、把下列各数填入相应的大括号里.
整数集合:{ …};
正数集合:{ …};
负分数集合:{ …};
非负有理数集合:{ …}.
22、解方程
(1);
(2).
23、甲、乙两名同学骑自行车从A地出发沿同一条路前往B地,他们离A地的距离S(km)与甲离开A地的时间t(h)之间的关系图象如图所示,根据图象提供的信息,回答下列问题:
(1)A地与B的路程是 km;
(2) 同学先到达B地;提前了 h;
(3)乙的骑行速度是 km/h;
(4)甲从A地到B地的最高时速是 km/h.
24、在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PF的长.