1、式子,
,
,
,
中,分式有( )个
A.2
B.3
C.4
D.5
2、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=4,则△BCE的面积等于( )
A.32 B.16 C.8 D.4
3、已知点P(a,2a﹣2)在直线y=x上,则a的值为( )
A.﹣2
B.0
C.1
D.2
4、如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是( )
A.5 cm
B.8 cm
C.9 cm
D.10 cm
5、的相反数是( )
A.
B.
C.-2
D.2
6、下列长度的三条线段,不能组成三角形的是( )
A.9,15,8 B.4,9,6 C.15,20,8 D.3,8,4
7、一个三角形的两边长为7和12,且第三边的长为整数,这样的三角形的周长的最大值是( )
A.25 B.27 C.28 D.37
8、下列计算错误的是( )
A.
B.
C.
D.
9、对于函数,下列结论正确的是( )
A.它的图象必经过点
B.它的图象不经过第三象限
C.当时,
D.随
的增大而增大
10、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110°
B.70°
C.55°
D.35°
11、如图:ΔABC中,AB=AC,D,E是ΔABC内两点,AD平分∠BAC,∠EBC=∠E=,若BE=6,DE=2,则BC=_________
12、在某校举办的队列比赛中,班的成绩如下:
项目 | 着装 | 队形 | 精神风貌 |
成绩/分 | 90 | 95 | 95 |
若按着装占10%、队形占60%、精神风貌占30%计算参赛班级的综合成绩,则班的最后得分是______分.
13、已知一次函数与
的图象交于点P,则点P的坐标为______.
14、如果有:,则
=____.
15、在平面直角坐标系中,
,下面有四种说法:
①一次函数的图象与线段
有公共点;
②当时,一次函数
的图象与线段
有公共点;
③当时,一次函数
的图象与线段
有公共点;
④当时,一次函数
的图象与线段
有公共点.
上述说法中正确的是_____________(填序号).
16、当____时,分式
的值为零.
17、由不等式ax>b可以推出x<,那么a的取值范围是____________
18、一元一次方程,方程的解是______。
19、某列列车平均提速v千米/时。用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是______.
20、如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.
21、(1)如图所示,在平面直角坐标系中,先描点,再将点
向右平移2个单位长度得到点
,作点
关于
轴的对称点
,最后描点
,作
;
(2)的面积是__________.
22、如图,与
关于点O成中心对称.
(1)画出对称中心O;(保留作图痕迹)
(2)若 ,
,
,则
的面积= .
23、问题情境:如图1,将含 角的三角板
和含
角的三角板
叠放在一起,使直角顶点重合,点 D 落在直线
上,点 E 落在直线
上.
绕点 A 旋转, 边
与
、
分别相交与点 F、点N,边
与
相交于点 M.
(1)如图 2,当 时:
①求的度数.
②判断 与
的数量关系,并说明理由.
(2)如图 3,当 平分
时:
①求的度数;
②判断 与
的位置关系,并说明理由.
24、A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,表示的是B车,
表示的是A车.
(1)汽车B的速度是多少?
(2)求、
分别表示的两辆汽车的s与t的关系式.
(3)行驶多长时间后,A、B两车相遇?
(4)什么时刻两车相距120千米?
25、(1)解方程:;
(2)解方程:.