1、若a、b为实数,在数轴上的位置如图所示,则的值是( ).
A.
B.
C.
D.
2、如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是( )
A. 110° B. 115° C. 120° D. 125°
3、已知方程组中的x、y相等,则n的值等于( )
A.1
B.3
C.-3
D.-4
4、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )
A.正方体
B.圆柱
C.圆锥
D.球
5、已知是方程2x+ay=5的解,则a的值是( )
A.a=1
B.a=3
C.a=﹣2
D.a=﹣3
6、图中的∠1、∠2可以是对顶角的是( )
A.
B.
C.
D.
7、如图,点为
的三条角平分线交点,
,
,
,将
平移(平移前后的对应线段平行)使其顶点与
重合,则图中阴影部分的周长为( )
A.4.5
B.6
C.3
D.4
8、若代数式x2﹣mx+4因式分解的结果是(x+2)2,则m的值是( )
A.﹣4 B.4 C.﹣2 D.±4
9、小明从A处出发沿正东方向行驶至B处,又沿南偏东15°方向行驶至C处,此时需把方向调整到正东方向,则小明应该( )
A.右转165°
B.左转75°
C.右转15°
D.左转15°
10、如图,长方形ABCD中∠DAC=68°,请依据尺规作图的痕迹,求出∠α等于( )
A.34° B.44° C.56° D.68°
11、不等式2(x﹣1)≤7﹣x的非负整数解有( )
A. 1个 B. 2个 C. 3个 D. 4个
12、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A.向右平移了3个单位
B.向左平移了3个单位
C.向上平移了3个单位
D.向下平移了3个单位
13、如图,CD、BF为△ABC的高,∠A=70°,则∠DGB=_____.
14、计算:______.
15、甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米.乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有__________千米
16、按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. ①如果输入x的值为5,那么操作进行______次才停止.
②如果输入x的值为2k-1,并且操作进行四次才停止,那么k的最大值是________.
17、等腰三角形的底角为,则顶角度数为__________.
18、如图,在和
中,
,给出下列四组条件:
①,
; ②
,
;
③,
; ④
,
.
其中,能使的条件有______(请填写所有满足条件的序号).
19、如图,中,
,
,
是角平分线,
是高,则
______________
.
20、若,则
______,
______.
21、课间活动时,小英、小丽和小华在操场上一起玩投沙包游戏,沙包投到区域所得分值与投到
区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示.
小英 小丽 小华
总分:34分 总分:32分 总分:?
(1)请求出小华的四次总分;
(2)如果小明在看完她们三个的投掷后也加入了这个游戏,并且最终赢得了胜利,请你说出小明投沙包的结果和所得分数.
22、计算下列各题
(1)(x3)2.(﹣x4)3
(2)(x5y4﹣
x4y3)
x3y3
(3)(2a+1)2﹣(2a+1)(2a﹣1)
(4)102+×(π﹣3.14)0﹣|﹣302|
23、计算:
(1)-23+ (2 018+3)0-
; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
24、为培养学生的特长爱好,提高学生的综合素质,某校音乐特色学习斑准备从京东商城里一次性购买若干个尤克里里和竖笛(每个尤克里里的价格相同,每个竖笛的价格相同),购买个竖笛和
个尤克里里共需
元;竖笛单价比尤克里里单价的一半少
元.
(1)求竖笛和尤克里里的单价各是多少元?
(2)根据学校实际情况,需一次性购买竖笛和尤克里里共个,但要求购买竖笛和尤克里里的总费用不超过
元,则该校最多可以购买多少个尤克里里?
25、①先化简,再求值:(4x+3)(x-2)-2(x-1)(2x-3),x=-2;
②若(x2+px+q)(x2-3x+2)的结果中不含x3和x2项,求p和q的值.
26、填空,将理由补充完整.
如图,于
,
于
,
,求证:
.
证明:∵,
(已知)
∴(垂直的定义)
∴(________________________)
∴(________________________)
∵(已知)
又∵(________________________)
∴(________________________)
∴(________________________)
∴(________________________)