1、如图,AB为的直径,P点在AB的延长线上,PM切
于M点,若
,那么
的周长是
A. B.
C.
D.
2、如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=( )
A.50°
B.65°
C.75°
D.85°
3、下列运算错误的是( )
A. a3+a3=2a6 B. a6÷a-3=a9 C. a3·a3=a6 D. (-2a2)3=-8a6
4、若关于x的一元二次方程有实数根,则实数k的取值范围是( )
A.
B.
C.且
D.
5、据有关部门统计,截至年
月,我国手机网民规模达
人,数据
用科学记数法表示为( )
A.
B.
C.
D.
6、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )
A. 19cm ² B. 16cm ² C. 15cm ² D. 12cm ²
7、如图是某个几何体的三视图,该几何体是( )
A.长方体 B.圆锥 C.圆柱 D.三棱柱
8、⊙O中,直径AB=a,弦CD=b,则a与b大小为( )
A. a>b B. a≥b C. a<b D. a≤b
9、如图,在斜坡EF上有一信号发射塔CD,某兴趣小组想要测量发射塔CD的高度,于是在水平地面用仪器测得塔顶D的仰角为31°,已知仪器AB高为2m,斜坡EF的坡度为i=3:4,塔底距离坡底的距离CE=10m,最后测得塔高为12m,A、B、C、D、E在同一平面内,则仪器到坡底距离AE约为( )米(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)
A.18.6
B.18.7
C.22.0
D.24.0
10、如图,在已知的∆ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A. 90° B. 95°
C. 100° D. 105°
11、如图,将函数y= (x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.
12、若(x+y)2=11,(x﹣y)2=7,则xy的值为 .
13、某批发城在冬天到来之际进了一批保暖衣,男生的保暖衣每件价格60元,女生的保暖衣每件价格40元,第一批共购买100件.
(1)第一批购买的保暖衣的总费用不超过5400元,求女生保暖衣最少购买多少件?
(2)第二批购买保暖衣,购买男、女生保暖衣的件数比为,价格保持第一批的价格不变;第三批购买男生保暖衣的价格在第一批购买的价格上每件减少了
元 ,女生保暖衣的价格比第一批购买的价格上每件增加了
元,男生保暖衣的数量比第二批增加了
,女生保暖衣的数量比第二批减少了
,第二批与第三批购买保暖衣的总费用相同,求
的值.
14、在△ABC中,,
,
,点D是AB延长线上一点(点D与点B不重合),过点D作线段
,使△BDE与△ABC全等,则点C到点E的距离为______.
15、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.
16、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°.设BE=a,DC=b,那么AB=_____(用含a、b的式子表示AB).
17、在“弘扬传统文化,打造书香校园”的活动中,学校计划开展四项活动:“A﹣国学诵读”,“B﹣演讲”,“C﹣课本剧”,“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如图:
(1)如图,则被调查的总人数为 人;扇形统计图中,希望参加活动A所占圆心角为 度.
(2)根据题中信息补全条形统计图;
(3)学校现有1000名学生,请根据图中信息,估算全校学生希望参加活动D有多少人?
18、如图是某景区每日利润(元)与当天游客人数x(人)的函数图象.为了吸引游客,该景区决定改革,改革后每张票价减少20元,运营成本减少800元.设改革后该景区每日利润为
(元).(注:每日利润=票价收入一运营成本)
(1)填空:、
关于x的函数表达式为:
_____;
_____.
(2)当游客人数为多少人时,改革前的日利润与改革后的日利润相等?
19、定义:在平面直角坐标系xOy中,点P的坐标为(x,y),当x>m时,Q点坐标为(﹣x,﹣y);当x≤m时,Q点坐标为(﹣x,﹣y+2),则称点Q为点P的m分变换点(其中m为常数).例如:(﹣2,3)的0分变换点坐标为(2,﹣1).
(1)点(5,7)的1分变换点坐标为 ;点(1,6)的1分变换点在反比例函数y=图象上,则k= ;若点(a﹣1,5)的1分变换点在直线y=x+2上,则a= .
(2)若点P在二次函数y=x2﹣2x﹣3的图象上,点Q为点P的3分变换点.
①直接写出点Q所在函数的解析式;
②求点Q所在函数的图象与直线y=﹣5交点坐标;
③当﹣4≤x≤t时,点Q所在函数的函数值﹣5≤y≤6,直接写出t的取值范围.
(3)点A(﹣3,﹣1),B(2,﹣1),若点P在二次函数y=x2﹣mx+﹣2(x>m)的图象上,点Q为点P的m分变换点.当点Q所在的函数图象与线段AB有两个公共点时,直接写出m的取值范围.
20、如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
21、如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,求证:BE∥AC.
22、先化简(1-)÷
,然后a在-2,0,2,3中选择一个合适的数代入并求值.
23、计算:.
24、如图所示,某人在山坡坡脚处测得电视塔尖点
的仰角为
,沿山坡向上走到
处再测得点
的仰角为
,已知
,山坡坡度
,且
、
、
在同一条直线上,求电视塔
的高度以及所在位置点
的铅直高度.(测角仪高度忽略不计,结果保留根号形式)