1、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
2、火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )
A.轨道周长之比为2∶3
B.线速度大小之比为
C.角速度大小之比为
D.向心加速度大小之比为9∶4
3、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
4、A、B两小球分别从图示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落点M水平距离为x,A球抛出点离地面高度为,与落点M水平距离为
,忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是( )
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球应先抛出的时间是
C.A、B两小球到达M点时速度方向一定相同
D.B球的初速度大小为
5、如图所示,光滑水平面上有一足够长的轻质绸布C,C上静止地放有质量分别为2m、m的物块A和B,A、B与绸布间的动摩擦因数均为μ。已知A、B与C间的最大静摩擦力等于滑动摩擦力。现对A施一水平拉力F,F从0开始逐渐增大,下列说法正确的是( )
A.当F=0.5μmg时,A、B、C均保持静止不动
B.当F=2.5μmg时,A、C不会发生相对滑动
C.当F=3.5μmg时,B、C以相同加速度运动
D.只要力F足够大,A、C一定会发生相对滑动
6、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
7、2021年7月,我国将发射全球首颗搭载主动激光雷达二氧化碳探测的大气环境监测卫星。在航天领域中,悬绳卫星是一种新兴技术,它要求两颗卫星在不同轨道上同向运行,且两颗卫星与地心连线始终在一条直线上、如图所示,卫星乙的轨道半径为r,甲、乙两颗卫星的质量均为m,悬绳的长度为r,其重力不计,地球质量为M,引力常量为G,则两颗卫星间悬绳的张力为( )
A.
B.
C.
D.
8、某压敏电阻的阻值随受压面所受压力的增大而减小。某兴趣小组利用该压敏电阻设计了判断电梯运行状态的装置,其电路如图甲所示。将压敏电阻平放在竖直电梯内,受压面朝上,在上面放一物体A,电梯静止时电压表示数为,在电梯由静止开始运行过程中,电压表的示数如图乙所示,则电梯运动情况为( )
A.匀加速下降
B.匀加速上升
C.加速下降且加速度在变大
D.加速上升且加速度在变小
9、如图所示,天花板上悬挂的电风扇绕竖直轴匀速转动,竖直轴的延长线与水平地板的交点为O,扇叶外侧边缘转动的半径为R,距水平地板的高度为h。若电风扇转动过程中,某时刻扇叶外侧边缘脱落一小碎片,小碎片落地点到O点的距离为L,重力加速度为g,不计空气阻力,则电风扇转动的角速度为( )
A.
B.
C.
D.
10、福岛第一核电站的核污水含铯、锶、氚等多种放射性物质,一旦排海将对太平洋造成长时间的污染。氚()有放射性,会发生β衰变并释放能量,其半衰期为12.43年,衰变方程为
,以下说法正确的是( )
A.的中子数为3
B.衰变前的质量与衰变后和
的总质量相等
C.自然界现存在的将在24.86年后衰变完毕
D.在不同化合物中的半衰期相同
11、图甲所示为家庭电路中的漏电保护器,其原理简图如图乙所示,变压器原线圈由火线和零线并绕而成,副线圈接有控制器,当副线圈ab端有电压时,控制器会控制脱扣开关断开,从而起保护作用。下列哪种情况扣开关会断开( )
A.用电器总功率过大
B.站在地面的人误触火线
C.双孔插座中两个线头相碰
D.站在绝缘凳上的人双手同时误触火线和零线
12、关于下列四幅图的说法正确的是( )
A.甲图为氢原子的电子云示意图,由图可知电子在核外运动有确定的轨道
B.乙图为原子核的比结合能示意图,由图可知原子核中的平均核子质量比
的要大
C.丙图为链式反应示意图,氢弹爆炸属于该种核反应
D.丁图为氡的衰变图像,由图可知1g氡经过3.8天后还剩0.25g
13、如图所示,在倾角=37°的斜面底端的正上方 H 处,平抛一个物体,该物体落到斜面上的速度方向正好与斜面垂直,则物体抛出时的初速度v为 ( )
A.
B.
C.
D.
14、如图甲所示,在粗糙绝缘水平面的A、C两处分别固定两个点电荷,A、C的位置坐标分别为-3L和2L,已知C处电荷的电荷量为4Q,图乙是AC连线之间的电势φ与位置坐标x的关系图像,图中x=0点为图线的最低点,x=-2L处的纵坐标,x=L处的纵坐标
,若在x=-2L的B点,由静止释放一个可视为质点的质量为m,电荷量为q的带电物块,物块随即向右运动,物块到达L处速度恰好为零,则下列说法正确的是( )
A.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
B.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
C.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
D.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
15、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
16、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
17、某平面区域内一静电场的等势线分布如图中虚线所示,一正电荷仅在电场力作用下由a运动至b,设a、b两点的电场强度分别为Ea、Eb,电势分别为a、
b,该电荷在a、b两点的速度分别为va、vb,电势能分别为Epa、Epb,则( )
A.Ea>Eb
B.a>
b
C.va>vb
D.Epa>Epb
18、关于家用照明用的220V交流电,下列说法中不正确的是( )
A.该交流电的频率为50Hz
B.该交流电的周期是0.02s
C.该交流电1秒内方向改变50次
D.该交流电的电压有效值是220V
19、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
20、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
21、如图,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P1、P2刚碰完时的共同速度v1=_____,P的最终速度v2=_____。
22、一定质量的理想气体的状态变化过程如右图所示, 为一条直线则气体从状态
到状态
的过程中,气体内能________(选填“先增大后减小”、“先减小后增大”、始终保持不变):气体吸收的热量______.气体对外所做功(选填“大于”、“等于”、“小于”).
23、如图所示P—V图象中,一定质量理想气体从状态A依次经过态B、C、D后再回到A。在B→C的过程中,单位体积中的气体分子数目______(选填“减小”、“不变”、“增大”);若A→B和D→A过程中,气体放出的热量分别为4J和20J,B→C和C→D的过程中,气体吸收的热量分别为20J和12J,则气体完成一次循环对外界所做的功是_______J。
24、“战绳”俗称“抖大绳”,因其廉价、简单易操作,受到很多健身爱好者的喜爱。如图所示为健身爱好者在同一根大绳上抖出的简谐波波形,实线(甲波)表示健身爱好者1在t=0时刻抖出的波形,虚线(乙波)表示健身爱好者2在t=40s时刻抖出的波形,两列波均沿x轴正方向传播,M为绳上x=0.2m处的质点。则甲波的频率______(填“小于”“等于”或“大于”)乙波的频率;图示两时刻,甲波上质点M的速度______(填“小于”“等于”或“大于”)乙波上质点M的速度;由图示时刻开始,再经半个周期,甲波上质点M运动的路程s=______m。
25、图示为控制中心大屏幕上显示的“神舟”十四号飞船在轨运行图,屏幕上的曲线表示它一段时间内先后两次在同一轨道绕地球做匀速圆周运动的“轨迹”。则飞船运动轨道面与赤道面______(选填“重合”或“不重合”);已知飞船运行周期为1.5h,在飞船先后经过同一纬度上a、b两位置的时间内,地球自转转过的角度为______。
26、在某次光电效应实验中,得到的遏制电压与入射光的频率
的关系如图所示,若该直线的斜率和截距分别为
和
,电子电荷量的绝对值为
,则普朗克常量可表示为_______,所用材料的逸出功可表示为_______
27、(1)某同学要测量一只电压表V1的内阻,查看表面刻度得知,该电表的量程为2.0V。他先用多用电表欧姆档粗测电压表V1的内阻,通过正确操作后,将选择旋钮置于“×100”档,欧姆表指针如图所示,则该电压表的内阻
的值约为______Ω。
(2)为了精确测量电压表的内阻,该同学还找到下列可选用的器材:
A.电源E(电动势6V,内阻很小)
B.电压表V2(量程0~6V,内阻未知)
C.定值电阻R1=4kΩ
D.定值电阻R2=200Ω
E.滑动变阻器R3(最大阻值1kΩ,额定电流为0.5A)
F.滑动变阻器R4(最大阻值10Ω,额定电流为2A)
G.开关S及导线若干
请选用上述实验器材设计一个能精确测量电压表V1的内阻的实验方案,并解答下列问题:
①为了便于实验操作和提高测量精确度,除待测电压表V1外,在上述实验器材中还需要选用的器材有______。(填写实验器材前面序号)
②请在右边的方框内画出测量电压表V1内阻的原理图______,并在图中标出所选用仪器的符号。
③电路接通后,若电压表V1和V2的读数分别为U1和U2,则待测电压表V1的内阻=______。(用相关字母表示)
28、如图所示,水平面上固定不计电阻的光滑金属导轨MN、PQ,间距L=0.5m。两金属棒ab、cd垂直导轨放置,与导轨接触良好,两棒的质量均为m=0.1kg,cd棒电阻R=3Ω,ab棒电阻r=1Ω,两棒与导轨间的动摩擦因数均为0.5,且最大静摩擦力等于滑动摩擦力。整个装置处于磁感应强度B=2.0T、方向竖直向下的匀强磁场中。棒ab在水平向右的恒力F作用下由静止开始运动,当ab棒运动位移x=1m时达到最大速度,此时cd棒刚好开始运动,求:
(1)恒力F的大小;
(2)ab棒由静止到最大速度的过程中通过ab棒的电荷量q;
(3)ab棒由静止到最大速度的过程中回路产生的焦耳热Q。
29、物块在水平面上做匀变速直线运动,计时开始的前2s内位移为,第4s内的平均速度大小为
。求物块在2s末的速度。
30、某次摩托车的特技表演可简化为如下模型,AB是长度为x的水平面,BC是圆弧,半径为2R的四分之一圆弧,DEG是半径为R的四分之三圆弧,D点在C点正上方,G点距右侧水平面高度为R,质量为m的摩托车(可视为质点)在大小恒定的牵引力F作用下从A点由静止出发,牵引力在ABC段的大小恒为F,摩托车经过C点时关闭发动机,之后沿竖直方向从D点进入上面的轨道做圆周运动,从G点脱离上方轨道,进入右侧水平面,已知重力加速度为g,假设在ABC段摩托车所受阻力恒定,且为重力的k倍,忽略其在DEG及空气中所受的阻力。
(1)为了摩托车能安全通过轨道,求力F的最小值
(2)若摩托车离开C点的速度大小是,判断摩托车能否安全通过上方圆弧轨道。若不能通过,计算在C点时应具有的最小速度,若能通过,求摩托车落在右侧水平面的位置距离C点多远。
31、如图所示,木板B静止于光滑水平面上,质量MA=3 kg的物块A放在B的左端,另一质量m=1 kg的小球用长L=0.8 m的轻绳悬挂在固定点O。锁定木板B,将小球向左拉至轻绳呈水平状态并由静止释放小球,小球在最低点与A发生弹性正碰,碰撞时间极短,碰后A在B上滑动,恰好未从B的右端滑出。已知A、B间的动摩擦因数μ=0.2,物块与小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2。
(1)求小球与A碰撞前瞬间绳上的拉力大小F;
(2)求B的长度x;
(3)若解除B的锁定,仍将小球拉到原处静止释放,为了使A在B表面的滑行距离能达到 ,求B的质量MB的范围。
32、如图为高压锅结构示意图,气孔1使锅内气体与外界连通,随着温度升高,锅内液体汽化加剧,当温度升到某一值时,小活塞上移,气孔1封闭.锅内气体温度继续升高,当气体压强增大到设计的最大值时,气孔2上的限压阀被顶起,气孔2开始放气.气孔2的横截面积为
,锅内气体可视为理想气体,已知大气压
,重力加速度g取
,求:
(1)限压阀的质量m;
(2)若限压阀被顶起后,立即用夹子夹住限压阀使其放气,假设放气过程锅内气体温度不变,当锅内气压降至,放出的气体与限压阀被顶起前锅内气体的质量比。