1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、I.“低碳经济”时代,科学家利用“组合转化”等技术对CO2进行综合利用。
(1)CO2和H2在一定条件下可以生成乙烯:6H2(g)+2CO2(g)CH2==CH2(g)+4H2O(g) △H=a kJ·mol-1
已知:H2(g)的燃烧热为285.8 kJ·mol-1,CH2=CH2(g)的燃烧热为1411.0 kJ·mol-1,H2O(g)= H2O(l)
△H=-44.0 kJ·mol-1,则a=______kJ·mol-1。
(2)上述生成乙烯的反应中,温度对CO2的平衡转化率及催化剂的催化效率影响如图,下列有关说法不正确的是_______(填序号)
①温度越高,催化剂的催化效率越高
②温发低于250℃时,随着温度升高,乙烯的产率增大
③M点平衡常数比N点平衡常数大
④N点正反应速率一定大于M点正反应速率
⑤增大压强可提高乙烯的体积分数
(3)2012年科学家根据光合作用原理研制出“人造树叶”。右图是“人造树叶”的电化学模拟实验装置图,该装置能将H2O和CO2转化为O2和有机物C3H8O。阴极的电极反应式为:__________________。
II.为减轻大气污染,可在汽车尾气排放处加装催化转化装置,反应方程式为:
2NO(g)+2CO(g) 2CO2(g)+N2(g)。
(4)上述反应使用等质量的某种催化剂时,温度和催化剂的比表面积对化学反应速率的影响对比实验如下表,c(NO)浓度随时间(t)变化曲线如下图:
①表中a=___________。
②实验说明,该反应是__________反应(填“放热”或“吸热”)。
③若在500℃时,投料NO的转化率为80%,则此温度时的平衡常数K=_____。
(5)使用电化学法也可处理NO的污染,装置如右图。已知电解池阴极室中溶液的pH在4~7之间,写出阴极的电极反应式:______。吸收池中除去NO的离子方程式为:_________________。
3、近几年我国大面积发生雾霾天气,其主要原因是SO2、NOx,挥发性有机物等发生二次转化,研究碳、氮、硫及其化合物的转化对于环境的改善有重大意义。
(1)在一定条件下,CH4可与NOx反应除去NOx,已知有下列热化学方程式:
①CH4(g)+2O2(g)=CO2(g)+2H2O(l) △H=-890.3 kJ·mol-1
②N2(g)+2O2(g) 2NO2(g) △H=+67.0 kJ·mol-1
③H2O(g)=H2O(l) △H=-41.0 kJ·mol-1
则CH4(g)+2NO2(g) CO2(g)+2H2O(g)+N2 (g) △H=_____kJ·mol-1;
(2)某研究小组用NaOH溶液吸收尾气中的二氧化硫,将得到的Na2SO3溶液进行电解,其中阴阳膜组合电解装置如图一所示,电极材料为石墨。
① a表示_____离子交换膜(填“阴”或“阳”)。A—E分别代表生产中的原料或产品。其中C为硫酸,则A表示_______。
②阳极的电极反应式为____________________。
(3)SO2经过净化后与空气混合进行催化氧化可制取硫酸,其中SO2发生催化氧化的反应为: 2SO2(g)+O2(g) 2SO3(g)。若在T1℃、0.1 MPa条件下,往一密闭容器通入SO2和O2 [其中n(SO2):n(O2)= 2:1],测得容器内总压强与反应时间如图二所示。
①图中A点时,SO2的转化率为________。
②在其他条件不变的情况下,测得T2℃时压强的变化曲线如图所示,则C点的正反应速率v0(正)与A点的逆反应速率vA(逆)的大小关系为v0(正)_____vA(逆) (填“>"、“<”或“ = ”)。
③图中B点的压强平衡常数Kp=______。(Kp=压强平衡常数,用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)
(4)为了清除NO、NO2、N2O4对大气的污染,常采用氢氧化钠溶液进行吸收处理。现有由a mol NO、b molNO2、c molN2O4组成的混合气体恰好被VL氢氧化钠溶液吸收(无气体剩余),则此氢氧化钠溶液的物质的量浓度最小为______________。
4、【选做-选修3: 物质结构与性质】硒化锌是一种半导体材料,回答下列问题。
(1)锌在周期表中的位置_______;Se 基态原子价电子排布图为______。元素锌、硫和硒第一电离能较大的是________(填元素符号)。
(2)Na2SeO3分子中Se原子的杂化类型为_______;H2SeO4 的 酸性比H2SeO3 强,原因是_______。
(3)气态SeO3分子的立体构型为_______;下列与SeO3互为等电子体的有__(填序号)。
A.CO32- B.NO3- C.NCl3 D.SO32-
(4)硒化锌的晶胞结构如图所示,图中X和Y点所堆积的原子均为______(填元素符号);该晶胞中硒原子所处空隙类型为_____(填“立方体”、“正四面体”或正八面体”);若该品晶胞密度为ρg/cm3,硒化锌的摩尔质量为Mg/mol。用NA代表阿伏加德罗常数的数值,则晶胞参数a为_______nm。
5、利用液化石油气中的丙烷脱氢可制取丙烯:C3H8(g)C3H6 (g)+H2 (g) △H。起始时,向一密闭容器中充入一定量的丙烷,在不同温度、压强下测得平衡时反应体系中丙烷的物质的量分数如图所示(已知pl为0.1 MPa)。
(1)反应的△H_________(填“>”“<”或“=’’,下同)
(2)以丙烯为燃料、熔融碳酸盐为电解质制作新型电池,放电时CO32-移向该电池的______(填“正极,或“负极”),当消耗2.8 L(标准状况)C3H6时,电路中转移电子的物质的量为__________。
(3)根据图中B点坐标计算,556℃时该反应酌平衡常数为______Pa(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数),若图中A、B两点对应的平衡常数用K(A)、K (B)表示,则K(A) _____(填“>” “<”或“=”)K(B)。
6、碳、硅两元素广泛存在于自然界中.请回答下列问题:
(1)基态14C原子的核外存在________对自旋方向相反的电子,硅原子的电子排布式为__________。
(2)晶体硅的结构与全刚石非常相似。晶体硅硅中硅原子的杂化方式为_______杂化;金刚石、晶体硅和金刚砂(碳化硅)的熔点由高到低的顺序为_____________。
(3)科学研究结果表明,碳的氧化物CO2能够与H2O借助子太阳能制备HCOOH。其反应原理如下:2CO2+2H2O=2HCOOH+O2,则生成的HCOOH分子中δ键和π键的个数比是_______。
(4)碳单质有多种形式,其中C60、石墨烯与金刚石晶体结构如图所示:
①C60、石墨烯与金刚石互为_________。
②C60形成的晶体是分子晶体,C60分子中含有12个五边形和20个六边形,碳与碳之间既有单键又有双键,已知C60分子所含的双键数为30,则C60分子中_______个C—C 键(多面体的顶点数、面数和棱边数的关系,遵循欧拉定理:顶点数+面数-棱边数=2)。在石墨烯晶体中,每个C原子连接______个六元环;在金刚石晶体中,每个C原子连接的最小环也为六元环,六元环屮最多有_______个C原子在同一平面。
③金刚石晶胞含有______个碳原子。若碳原子的半径为r,金刚石晶胞的边长为a,根据硬球接触模型,则r=______a,列式表示碳原子在晶胞中的空间占有率为_______(不要求计算结果)。
7、(1)氢键是微粒间的一种常见作用力,如存在于醋酸分子间()和硝酸分子内(
)等。已知邻氨基苯甲醛(
)的熔点为39℃,对氨基苯甲醛(
)的熔点为71℃,请说明对氨基苯甲醛的熔点比邻氨基苯甲醛高的原因___。
(2)请用一个化学方程式并结合适当的文字说明HClO、H2CO3和HCO酸性的强弱___。
8、以TiO2为催化剂,在光照条件下可将还原为HCOO-等有机物。
(1)制备TiO2:
TiCl4转化为TiO2·xH2O的化学方程式是_______。
(2)光催化还原的反应过程如下图所示。
A侧产生HCOO-的反应式为_______。
在光照和TiO2存在下,以体积相同的0.25mol·L-1Na2CO3溶液为反应物,相同时间后检测HCOO-浓度,结果如下表。
实验 | 溶液中添加的其它成分 | 通入的气体 | |
ⅰ | - | - | 73.5 |
ⅱ | - | CO2 | 92.6 |
ⅲ | - | O2 | 2.1 |
ⅳ | Na2SO3 | - | 158.1 |
(3)推测HCO也能在该条件下被还原为HCOO-,结合表中数据说明推测的依据:_______。
(4)实验iii中HCOO-浓度明显低于实验i,可能的原因是_______。
(5)研究实验iv中HCOO-浓度明显高于实验i的原因,设计并完成实验v。
实验v:光照条件下,未添加TiO2时重复实验iv,没有检测到SO。
①实验v中检测SO的操作和现象为_______。
②对比实验iv、v,分析实验iv中Na2SO3的作用:_______(答出2点)。
9、(1)84消毒液的有效成分是_____。
(2)O2F2为共价化合物,各原子均满足8电子稳定结构,写出O2F2的电子式_____。
(3)NaOH的碱性比Mg(OH)2强,主要原因是_____。
10、过硫酸钠(Na2S2O8)常用作漂白剂、氯化剂等。某研究小组利用下图装置制备Na2S2O8并探究其性质(加热及夹持仪器略去)。
已知:①(NH4)2S2O8+2NaOHNa2S2O8+2NH3↑+2H2O,
②2NH3+3Na2S2O8+6NaOH6Na2SO4+N2+6H2O。
(l)仪器a的名称是_______。装置Ⅰ中NaOH溶液的作用是吸收空气中_______(填化学式),减少副反应的发生。
(2)装置Ⅱ发生反应的同时,需要持续通入空气的目的是_______。
(3)装置Ⅲ的作用是_______。
(4)Na2S2O8溶液与铜反应只生成两种盐,且反应先慢后快。
①该反应的化学方程式为_______。
②某同学推测反应先慢后快的原因可能是生成的Cu2+对反应起催化作用。完成下列实验设计:向盛有等质量铜粉的试管中,分别加入_______,再加入等体积等浓度的Na2S2O8溶液,若加入硫酸铜溶液的试管中反应快,则该推测正确。
(5)测定产品纯度:称取0.2500g样品,用蒸馏水溶解,加入过量KI,充分反应后,再滴加几滴指示剂,用0.1000mol·L-1 Na2S2O8标准溶液滴定,达到滴定终点时,消耗标准溶液的体积为19.50 mL。(已知:I2+=
+2I-)
①选用的指示剂是_______;达到滴定终点的现象是:当滴入最后一滴标准溶液时,_______,且半分钟内不恢复。
②样品的纯度为_______。
11、标准状况下,向多份等量的NaOH固体中,分别加入一定体积的1.00mol/L (NH4)2Fe(SO4)2溶液充分反应,反应产生的NH3随(NH4)2Fe(SO4)2溶液体积的变化如图所示(假设生成的NH3全部逸出):
请计算:
(1)a的值为__________L。
(2)每份NaOH固体的物质的量__________mol(写出计算过程)。
12、钪及其化合物具有许多优良的性能,在宇航、电子、超导等方面有着广泛的应用。从钛白工业废酸(含钪、钛、铁、锰等离子)中提取氧化钪(Sc2O3)的一种流程如图:
回答下列问题:
(1)洗涤“油相”可除去大量的钛离子。洗涤水是用93%的硫酸、27.5%的双氧水和水按一定比例混合而成。混合的实验操作是_____。
(2)常温下,先加入氨水调节pH=3,过滤,滤渣主要成分是_____;再向滤液加入氨水调节pH=6,滤液中Sc3+的浓度为_____。{已知:Ksp[Mn(OH)2]=1.9×10-13、Ksp[Fe(OH)3]=2.6×10-39、Ksp[Sc(OH)3]=9.0×10-31)。
(3)用草酸“沉钪”,“沉钪”得到草酸钪的离子方程式是_____。
(4)草酸钪“灼烧”氧化的化学方程式为_____。
(5)Ti(BH)3是一种储氢材料,可由TiCl4和LiBH4反应制得。
①写出BH的结构式是_____(标明其中的配位键)。
②常温下,TiCl4是一种有刺激性臭味的无色液体,熔点为-23.2℃,沸点为136.2℃;TiF4为白色粉末,熔点为377℃。TiCl4和TiF4熔点不同的原因是_____。
(6)由氧元素形成的常见物质有H2O2、H2O、O2,H2O2为_____(填“极性”或“非极性”)分子,O2的晶胞为立方体,结构如图。根据图中信息,可计算O2晶体密度是_____g·cm-3(设NA为阿伏加德罗常数的值)。
13、氮化镓材料是制造大功率和高频微波电子器件的理想半导体材料。一种从铝土矿中提取Ga并制备GaN的工艺流程如图所示。
巳知:①镓的熔点是29.8℃,沸点是2403℃;②氮化镓不溶于水熔点是1700℃;③镓与铝同主族,镓的化学性质与铝相似,金属的活泼性:Zn>Ca>Ni>Cu。
(1)写出氧化镓与氢氧化钠溶液反应的离子方程式:__;通入适量二氧化碳生成氢氧化铝、碳酸钠的化学方程式是__。
(2)镓与NH3在1000℃发生可逆反应生成固体半导体材料GaN,每生成1molH2时放出10.3kJ热量,写出该反应的热化学方程式:__。
(3)图中“酸浸”的目的是__,“操作I”的名称是__。
(4)某粗镓中含有杂质Ni、Zn、Cu,可采用电解精炼法提纯镓,其装置如图所示。
①N为电源的__极,电解精炼镓时产生的阳极泥的主要成分是__(填化学式)。
②电解过程中阳极产生的离子迁移到阴极并在阴极析出高纯镓,写出电解过程中阴极的电极反应式:__。