1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、铜是重要金属,Cu的化合物在科学研究和工业生产中具有许多用途,如CuSO4溶液常用作电解液,电镀液等。请回答以下问题:
(1)CuSO4可由金属铜与浓硫酸反应制备,该反应的化学方程式为___________。
(2)CuSO4粉末常用来检验一些有机物中的微量水分,其原因是_______。
(3)SO42-的立体构型是________,其中S原子的杂化轨道类型是_______。
3、铜、镓、硒、硅等元素的化合物是生产第三代太阳能电池的重要材料。请回答:
(1)基态铜原子的电子排布式为 ;已知高温下CuO→Cu2O+O2,从铜原子价层电子结构(3d和4s轨道上应填充的电子数)变化角度来看,能生成Cu2O的原因是 。
(2)硒、硅均能与氢元素形成气态氢化物,则它们形成的组成最简单的氢化物中,分子构型分别为 ,若“Si—H”中共用电子对偏向氢元素,氢气与硒反应时单质硒是氧化剂,则硒与硅的电负性相对大小为Se Si(填“>”、“<”)。
(3)SeO2常温下白色晶体,熔点为340~350℃,315℃时升华,则SeO2固体的晶体类型为 ;若SeO2类似于SO2是V型分子,则Se原子外层轨道的杂化类型为 。
(4)与镓元素处于同一主族的硼元素具有缺电子性(价电子数少于价层轨道数),其化合物可与具有孤对电子的分子或离子生成配合物,如BF3能与NH3反应生成BF3·NH3。BF3·NH3中B原子的杂化轨道类型为 ,B与N之间形成 键。
(5)金刚砂(SiC)的硬度为9.5,其晶胞结构如图所示;则金刚砂晶体类型为 ,在SiC中,每个C原子周围最近的C原子数目为 个;若晶胞的边长为a pm,则金刚砂的密度表达式为 g/cm3。
4、碳的化合物的转换在生产、生活中具有重要的应用,如航天员呼吸产生的CO2用Sabatier反应处理,实现空间站中O2的循环利用。
Sabatier反应:CO2(g)+4H2(g)CH4(g)+2H2O(g);
水电解反应:2H2O(1) 2H2(g) +O2(g)。
(1)将原料气按n(CO2):n(H2)=1:4置于密闭容器中发生Sabatier反应,测得H2O(g)的物质的量分数与温度的关系如图所示(虚线表示平衡曲线)。
①该反应的平衡常数K随温度降低而________(填“增大”或“减小”)。
②在密闭恒温(高于100℃)恒容装置中进行该反应,下列能说明达到平衡状态的是_____。
A.混合气体密度不再改变 B.混合气体压强不再改变
C.混合气体平均摩尔质量不再改变 D. n(CO2):n(H2)=1:2
③200℃达到平衡时体系的总压强为p,该反应平衡常数Kp的计算表达式为_______。(不必化简,用平衡分,压代替平衡浓度计算,分压=总压×物质的量分数)
(2)Sabatier反应在空间站运行时,下列措施能提高CO2转化率的是____(填标号)。
A.适当减压 B.合理控制反应器中气体的流速
C.反应器前段加热,后段冷却 D.提高原料气中CO2所占比例
(3)一种新的循环利用方案是用Bosch反应CO2(g)+4H2(g)C(s)+2H2O(g)代替Sabatier反应。
①已知CO2(g)、H2O(g)的生成焓分别为-394kJ/mol、-242kJ/mol,Bosch反应的△H=_____kJ/mol。(生成焓指一定条件下由对应单质生成lmol化合物时的反应热)
②一定条件下Bosch反应必须在高温下才能启动,原因是______________。若使用催化剂,则在较低温度下就能启动。
③Bosch反应的优点是_______________。
5、NO、SO2是大气污染物但又有着重要用途。
I.已知:N2 (g) + O2(g) = 2NO (g) ΔH1= 180.5kJ·mol−1
C(s) + O2(g) = CO2(g) ΔH2 = −393.5kJ·mol−1
2C(s) + O2(g) =2CO(g) ΔH3 =−221.0kJ·mol−1
(1)某反应的平衡常数表达式为K= , 此反应的热化学方程式为:_________
(2)向绝热恒容密闭容器中充入等量的NO和CO进行反应,能判断反应已达到化学平衡状态的是_______(填序号)。
a.容器中的压强不变 b.2v正(CO)=v逆(N2)
c.气体的平均相对分子质量保持34.2不变 d.该反应平衡常数保持不变
e.NO和CO的体积比保持不变
II.(3)SO2可用于制Na2S2O3。为探究某浓度的Na2S2O3的化学性质,某同学设计如下实验流程:
用离子方程式表示Na2S2O3溶液具有碱性的原因___________。Na2S2O3与氯水反应的离子方程式是__________。
(4)含SO2的烟气可用Na2SO3溶液吸收。可将吸收液送至电解槽再生后循环使用。再生电解槽如图所示。a电极上含硫微粒放电的反应式为_________________________(任写一个)。离子交换膜______(填标号)为阴离子交换膜。
(5)2SO3(g)2SO2(g)+O2(g),将一定量的SO3放入恒容的密闭容器中,测得其平衡转化率随温度变化如图所示。图中a点对应温度下,已知SO3的起始压强为P0,该温度下反应的平衡常数Kp= _______(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。在该温度下达到平衡,再向容器中加入等物质的量SO2和SO3,平衡将___________(填“向正反应方向”或“向逆反应方向” “不”) 移动。
6、六方晶胞是一种常见晶胞,镁、锌和钛的常见晶胞属于六方晶胞。
(1)①写出Zn所在元素周期表中的分区是_______;
②Ti的基态原子价电子排布式_______;
③下表为Na、Mg、Al的第一电离能。
第一电离能 | 元素 | ||
Na | Mg | Al | |
496 | 738 | 577 |
请解释其变化规律的原因_______。
(2)已知以上三种金属的盐的熔沸点(℃)如下表:
物理性质 | 氯化物 | ||
熔点 | 712 | 290 | -24.1 |
沸点 | 1412 | 732 | 136.4 |
已知:熔融状态下能够导电。请解释三种氯化物熔沸点差异的原因_______。
的熔沸点明显偏低的另一个原因是该分子空间构型是_______,分子高度对称,没有极性,分子间作用力很弱。
(3)某晶体属于六方晶系,其晶胞参数,
。晶胞沿着不同方向投影如下,其中深色小球代表A原子,浅色大球代表B原子(化学环境完全等同)。已知A2原子坐标为
,B1原子沿c方向原子坐标参数
。
①该物质的化学式为_______。
②晶胞中原子A1—A2在ab面投影的距离为_______(保留四位有效数字)。
③B1原子坐标参数为_______。
7、氧的常见氢化物有H2O与H2O2。
(1)纯净H2O2为浅蓝色粘稠液体,除相对分子质量的影响外,其沸点(423K)明显高于水的原因为_______。
(2) H2O2既有氧化性也有还原性,写出一个离子方程式其中H2O2在反应中仅体现还原性_______。
8、丙烯酸是非常重要的化工原料之一,可用甘油催化转化如下:
甘油丙烯醛
丙烯酸
,
已知:反应Ⅰ:
(活化能)
反应Ⅱ:
(活化能)
甘油常压沸点为290℃,工业生产选择反应温度为300℃,常压下进行。
(1)①反应Ⅰ在_______条件下能自发进行(填“高温”或“低温”);
②若想增大反应Ⅱ的平衡常数K,改变条件后该反应_______(选填编号)
A.一定向正反应方向移动 B.在平衡移动时正反应速率先增大后减小
C.一定向逆反应方向移动 D.在平衡移动时逆反应速率先减小后增大
(2)工业生产选择反应温度为300℃,忽略催化剂活性受温度影响,分析温度不能过低理由是_______。
(3)工业制备丙烯酸的中间产物丙烯醛有剧毒,选择催化剂_______能使工业生产更加安全。(选填编号)
催化剂A:能大幅降低和
催化剂B:能大幅降低,
几乎无影响
催化剂C:能大幅降低,
几乎无影响
催化剂D:能升高和
(4)①温度350℃,向1L恒容密闭反应器中加入1.00mol甘油和进行该实验。同时发生副反应:
。实验达到平衡时,甘油的转化率为80%。乙酸和丙烯酸的选择性随时间变化如图所示,计算反应
的平衡常数为_______(X的选择性:指转化的甘油中生成X的百分比)
②调节不同浓度氧气进行对照实验,发现浓度过高会降低丙烯酸的选择性,理由是_______。
(5)关于该实验的下列理解,正确的是_______。
A.增大体系压强,有利于提高甘油的平衡转化率
B.反应的相同时间,选择不同的催化剂,丙烯酸在产物中的体积分数不变
C.适量的氧气能抑制催化剂表面积碳,提高生产效率
D.升高反应温度,可能发生副反应生成COx,从而降低丙烯酸的产率
9、I.“低碳经济”时代,科学家利用“组合转化”等技术对CO2进行综合利用。
(1)CO2和H2在一定条件下可以生成乙烯:6H2(g)+2CO2(g)CH2==CH2(g)+4H2O(g) △H=a kJ·mol-1
已知:H2(g)的燃烧热为285.8 kJ·mol-1,CH2=CH2(g)的燃烧热为1411.0 kJ·mol-1,H2O(g)= H2O(l)
△H=-44.0 kJ·mol-1,则a=______kJ·mol-1。
(2)上述生成乙烯的反应中,温度对CO2的平衡转化率及催化剂的催化效率影响如图,下列有关说法不正确的是_______(填序号)
①温度越高,催化剂的催化效率越高
②温发低于250℃时,随着温度升高,乙烯的产率增大
③M点平衡常数比N点平衡常数大
④N点正反应速率一定大于M点正反应速率
⑤增大压强可提高乙烯的体积分数
(3)2012年科学家根据光合作用原理研制出“人造树叶”。右图是“人造树叶”的电化学模拟实验装置图,该装置能将H2O和CO2转化为O2和有机物C3H8O。阴极的电极反应式为:__________________。
II.为减轻大气污染,可在汽车尾气排放处加装催化转化装置,反应方程式为:
2NO(g)+2CO(g) 2CO2(g)+N2(g)。
(4)上述反应使用等质量的某种催化剂时,温度和催化剂的比表面积对化学反应速率的影响对比实验如下表,c(NO)浓度随时间(t)变化曲线如下图:
①表中a=___________。
②实验说明,该反应是__________反应(填“放热”或“吸热”)。
③若在500℃时,投料NO的转化率为80%,则此温度时的平衡常数K=_____。
(5)使用电化学法也可处理NO的污染,装置如右图。已知电解池阴极室中溶液的pH在4~7之间,写出阴极的电极反应式:______。吸收池中除去NO的离子方程式为:_________________。
10、甲、乙连个探究性学习小组,他们拟测定过氧化钠样品(含少量的Na2O)的纯度。
(1)甲组同学拟选用图l实验装置完成实验:
①写出实验中所发生主要反应的化学方程式____________
②该组同学必须选用的装置的连接顺序是:
A 接(____),(____)接(____), (____)接(____) (填接口字母,可不填满);
(2)乙组同学仔细分析甲组同学的实验装置后,认为:水滴入锥形瓶中,即使不生成氧气,也会将瓶内空气排出,使所测氧气体积偏大;实验结束时,连接广口瓶和量筒的导管中有少量水存在,使所测氧气体积偏小。于是他们设计了图2所示的实验装置。
①装置中导管a的作用:__________
②实验结束冷却至室温后,在读取量气管k中液面读数时,K中液面高于H中的液面,则测量结果将__________(偏高,不变或偏低),若有影响,应进行_________(操作)后再读效;
③若实验中样品的质量为mg,实验前后量气管k中液面读数分别为V0L、V1L(V0> V1换算成标况)。则样品的纯度为__________(含m、V0、V1的表达式)
(3)图2的装置可测定一定质量铜铁合金(不含其它元素)样品中铁的质量分数。分液漏斗中加入的试剂是__________.
11、溶液与
锌粉在量热计中充分反应。测得反应前温度为
,反应后最高温度为
。
已知:反应前后,溶液的比热容均近似为、溶液的密度均近似为
,忽略溶液体积、质量变化和金属吸收的热量。请计算:
(1)反应放出的热量_____J。
(2)反应的
______
(列式计算)。
12、研究二氧化碳的资源化利用具有重要的意义。回答下列问题:
(1)已知下列热化学方程式:
反应I:CO2(g)+4H2(g)⇌CH4(g)+2H2O(g) ΔH1=-164.9kJ/mol。
反应II:CO2(g)+H2(g)⇌CO(g)+H2O(g) ΔH2=+41.2kJ/mol
则反应CH4(g)+H2O(g)⇌CO(g)+3H2(g)的ΔH3=_______。
(2)在T℃时,将CO2和H2加入容积不变的密闭容器中,发生反应I:CO2(g)+4H2(g)⇌CH4(g)+2H2O(g),能判断反应达到平衡的是_______(填标号)。
A.CO2的消耗速率和CH4的生成速率相等
B.容器内气体压强不再发生变化
C.混合气体的密度不再发生变化
D.混合气体的平均相对分子质量不再发生变化
(3)将n(CO2):n(H2)=1:4的混合气体充入密闭容器中发生上述反应I、II,在不同温度和压强时,CO2的平衡转化率如图所示。0.1MPa时,CO2的转化率在600℃之后,随温度升高而增大的主要原因是_______。
(4)①CO2加氢制备CH4的一种催化机理如图,下列说法中正确的是_______。
A.催化过程使用的催化剂为La2O3和La2O2CO3
B.La2O2CO3可以释放出CO2*(活化分子)
C.H2经过Ni活性中心断键裂解产生活化态H*的过程为放热过程
D.CO2加氢制备CH4的过程需要La2O3和Ni共同完成
②CO2加氢制备CH4过程中发生如下反应:
I.CO2(g)+4H2(g)⇌CH4(g)+2H2O(g) △H1
II.CO2(g)+H2(g)⇌CO(g)+H2O(g) △H2
反应I的Arrhenius经验公式的实验数据如图中曲线a所示,已知Arrhenius经验公式为Rlnk=-(Ea为活化能,k为速率常数,R和C为常数)。则该反应的活化能Ea=_______kJ/mol。当改变外界条件时,实验数据如图中的曲线b所示,则实验可能改变的外界条件是_______。
(5)一定温度和压强为1MPa条件下,将CO2和H2按物质的量之比为1:4通入密闭弹性容器中发生催化反应,假设只发生反应:I.CO2(g)+4H2(g)⇌CH4(g)+2H2O(g);II.CO2(g)+H2(g)⇌CO(g)+H2O(g),10min两个反应均达到平衡时,CO2平衡转化率为80%,CH4选择性为50%[CH4的选择性=]。该温度下,反应II的Kp_______(已知Kp是用反应体系中气体物质的分压来表示的平衡常数,即将K表达式中平衡浓度用平衡分压代替),用CH4的分压变化表示反应I在10分钟内达平衡的平均速率为_______MPa·min-1(列出算式即可)。
13、卤族元素能形成多种物质,结构和性质之间充满联系。
(1)部分卤族元素的某种性质a随核电荷数的变化趋势如图所示,则a表示正确的是_____。(填字母)
a.原子半径 b.氢化物的稳定性
c.单质的氧化性 d.元素的非金属性
(2)溴化碘(IBr)的化学性质类似于卤素单质,溴化碘和水反应所得产物中有一种为三原子分子,该分子的电子式为_____;溴原子核外电子能量最高的电子层符号是_____。
(3)ClF3的熔、沸点比BrF3的_____(填“高”或“低”),理由是_____。
ClO2气体可处理污水中的CN-,以下是ClO2的两种制备方法:
方法一:2NaClO3+4HCl=2ClO2↑+Cl2↑+2NaCl+2H2O
方法二:2NaClO3+H2O2+H2SO4=2ClO2↑+O2↑+Na2SO4+2H2O
(4)ClO2与CN- (C是+2价)反应产生2种无毒气体,反应中氧化剂和还原剂物质的量之比为_____。
(5)请评价上述哪一种方法制备的ClO2更适合用于饮用水的消毒______。