1、北京时间2023年11月1日6时50分,我国在太原卫星发射中心成功将“天绘五号”卫星发射升空,卫星顺利进入预定轨道。“天绘五号”卫星在轨道上做匀速圆周运动的周期为T,月球绕地球公转周期为T0,则“天绘五号”卫星与月球的轨道半径之比为( )
A.
B.
C.
D.
2、在“天宫课堂”第四课中,神舟十六号航天员朱杨柱、桂海潮展示了在微重力环境下用“特制”球拍击打水球的现象,下列说法正确的是( )
A.在地面附近也可以获得微重力环境
B.在微重力环境下,水球的惯性减小
C.水球悬浮时所受浮力与地球引力平衡
D.物体在空间站中受地球引力比在地面小很多
3、如图所示,竖直面内的正方形导线框,以某一初速度垂直进入水平向里的有界匀强磁场并最终完全穿出。线框的边长小于磁场宽度,不计空气阻力。下列说法正确的是( )
A.线框进磁场的过程中电流方向为顺时针方向
B.线框出磁场的过程中可能做匀减速直线运动
C.线框在进和出的两过程中受到安培力的冲量一定相等
D.线框在进和出的两过程中产生的焦耳热一定相等
4、如图所示,两竖直挡板间有一光滑的水平直杆,一轻弹簧穿在杆上,弹簧左侧与挡板相连,右侧与穿在杆上的小球甲相连。现让小球甲开始做简谐运动,其位移随时间变化的关系为,当小球甲经过平衡位置时,在小球甲的正上方由静止释放小球乙,结果甲与乙恰好相碰,甲、乙均视为质点,取重力加速度大小
,不计空气阻力,弹簧始终在弹性限度内,小球不会与竖直挡板相碰,则小球乙下落的高度为( )
A.(
,
,
)
B.(
,
,
)
C.(
,
,
)
D.(
,
,
)
5、如图所示,施工员确定地下金属管线位置的一种方法如下:①给管线通入电流,电流产生磁场; ②用可测量磁场强弱、方向的仪器在管线附近水平地面上找到磁场最强的某点,记为a; ③在a 点附近地面上找到与 a点磁感应强度相同的若干点,将这些点连成直线 EF; ④在过a点垂直于 EF并位于地面的直线上,找到磁场方向与地面夹角为53°、距离为 L 的 b、c两点,不计地磁场影响, 则( )
A.EF 垂直于管线
B.管线深度为 L
C.b、c两点磁感应强度大小和方向均相同
D.管线中应通入正弦式交变电流
6、电磁炮是利用安培力加速弹体的一种新型武器,可简化为如图的结构示意图,光滑水平导轨宽,在导轨间有竖直向上、磁感应强度大小为
的匀强磁场,弹体总质量
,电源能提供
的稳定电流,不计感应电动势和其它任何阻力,让弹体从静止加速到
,轨道长度至少需要( )
A.12米
B.24米
C.36米
D.48米
7、在东北严寒的冬天,有一项“泼水成冰”的游戏,具体操作是把一杯滚烫的开水按一定的弧线均匀快速地泼向空中,泼洒出的小水珠和热气被瞬间凝结成冰而形成壮观的场景,如图甲所示是某人玩泼水成冰游戏的精彩瞬间,图乙为其示意图,假设泼水过程中杯子做匀速圆周运动,下列说法正确的是( )
A.P位置的小水珠速度方向沿a方向
B.P、Q两位置,杯子的向心加速度相同
C.从Q到P,杯子所受合外力做功为零
D.从Q到P,杯子所受合外力的冲量为零
8、如图所示的电路为某控制电路的简化图,图中电源内阻不计,R1、R2、R3为定值电阻,R0为光敏电阻(阻值随光照强度的增加而减小),电压表、电流表均为理想电表,开关S闭合后,电表示数分别表示为U、I1、I2,电表示数变化量分别表示为∆U、∆I1、∆I2。在光照强度减弱的过程中,下列说法正确的是( )
A.U、I1、I2都增大
B.U、I1、I2都减小
C.U增大,I1、I2减小
D.增大
9、如图所示,透明介质的截面为长方形,某种颜色的光线从边1射入介质,经边2反射后射到边3上,入射光线与边1的夹角为,折射光线与边2的夹角为
,反射光线与边3的夹角为
,该光线对该介质发生全反射的临界角为C,已知
、
,则
为( )
A.75°
B.60°
C.45°
D.30°
10、2023年5月30日,神舟16号载人飞船成功发射进入预定轨道,顺利将景海鹏、朱杨柱、桂海潮3名航天员送入太空。神舟十六号载人飞船可视为做匀速圆周运动,运行周期为T,地球的半径为R,地表重力加速度为g,引力常量为G,忽略地球自转。下列说法正确的是( )
A.地球的质量等于
B.神舟16号离地球表面的高度为
C.神舟十三号载人飞船的线速度大于第一宇宙速度
D.神舟十三号载人飞船的加速度大于地球表面的重力加速度
11、2023年10月26日11时14分,搭载“神舟十七号”载人飞船的“长征二号”F遥十七运载火箭在酒泉卫星发射中心点火发射,约10分钟后,“神舟十七号”载人飞船与火箭成功分离,进入预定道,在经历约6.5小时的对接过程后,飞船成功对接于空间站“天和”核心舱前向端口。若核心舱绕地球的运行可视为匀速圆周运动,地球的自转周期为,引力常量为
,测下列说法正确的是( )
A.“神舟十七号”的发射速度可能小于第一宇宙速度
B.核心舱的运行速度可能大于第一宇宙速度
C.若已知核心舱的运行周期和道半径,则可推算出地球同步轨道卫星的轨道半径
D.若已知核心舱的运行线速度和轨道半径,则可推算出地球的平均密度
12、如图所示为LC振荡电路某时刻的情况,以下说法中正确的是( )
A.电容器正在充电
B.电感线圈中的磁场能正在减小
C.电感线圈中的电流正在增大
D.此时刻线圈中的自感电动势正在阻碍电流减小
13、质子(质量数和电荷数均为1)和粒子(质量数为4、电荷数为2)垂直进入某一平行板间的匀强电场中,又都从另一侧离开电场。若两粒子在通过平行板时动能的增量相同,不计粒子重力,则下列判断正确的是( )
A.质子和粒子射入时的初动量之比为
B.质子和粒子射入时的初动能之比为
C.质子和粒子射入时的初速度之比为
D.质子和粒子在平行板间的运动时间之比为
14、用如图所示电路研究光电效应现象,A、K两个电极密封在真空玻璃管中。先后用频率为、
的入射光照射K极,电压表测出遏止电压分别为
和
,下列说法正确的是( )
A.光电子在K、A间加速运动
B.普朗克常量
C.增大入射光的光强,K极金属的逸出功也增大
D.当微安表示数最大时,电压表示数即为遏止电压
15、如图所示,一定质量的理想气体,从图中A状态开始,经历了B、C状态,最后到D状态.AB的反向延长线过O点,BC和DA连线与横轴平行,CD与纵轴平行,则下列说法正确的是( )
A.过程,气体放出热量
B.过程,气体压强增大
C.过程,气体压强增大且增大的原因是气体分子数密度增大
D.整个过程,气体对外做的功小于外界对气体做的功
16、将弹性小球以某初速度从O点水平抛出,与地面发生弹性碰撞(碰后竖直速度与碰前等大反向,水平速度不变),反弹后在下降过程中恰好经过固定于水平面上的竖直挡板的顶端。已知O点高度为1.25m,与挡板的水平距离为6.5m,挡板高度为0.8m,,不计空气阻力的影响。下列说法中正确的是( )
A.小球水平方向的速率为5m/s
B.小球第一次落地时速度与水平方向的夹角为30°
C.小球经过挡板上端时,速度与水平方向夹角的正切值为1
D.小球从挡板上端运动到水平地面经历的时间为0.4s
17、如图所示,某物理老师为了演示动量守恒定律的应用,在光滑水平桌面上放置一小车,用细线将一小钢球悬挂在小车的立柱上。演示开始前该老师用右手按住小车,左手拿着小球将细线向左拉开一定角度,并保持整个装置静止在桌面上的A处,若使小车能够运动到右侧较远的B处,下列方案可行的是( )
A.同时松开两只手
B.先松开左手,当小球第一次运动到最低点时,再松开右手
C.先松开左手,当小球运动到右侧最高点时,再松开右手
D.先松开左手,当小球第二次运动到最低点时,再松开右手
18、普通的交流电压表不能直接用来测量高压输电线路间的电压,通常要通过电压互感器来连接。图(b)为电压互感器示意图,ab端所接线圈的匝数较少,工作时ab端电压为,cd端所接线圈的匝数较多,工作时cd端电压为
,现利用这个电压互感器通过普通的交流电压表测量图(a)中输电导线间的高电压,下列说法中正确的是( )
A.ab接MN、cd接电压表,
B.ab接MN、cd接电压表,
C.cd接MN、ab接电压表,
D.cd接MN、ab接电压表,
19、关于伽利略设计的如图所示的斜面实验,下列说法正确的是( )
A.通过实验研究,伽利略总结得出了惯性定律
B.伽利略认为物体一旦具有某一速度,如果它不受力,它将以这一速度永远运动下去
C.图中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成
D.图中的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持
20、在如图所示的电路中,电源电动势为,内阻为
,电流表
,电压表
均为理想电表,
为定值电阻,其中
的阻值大于内阻
为滑动变阻器。当滑动变阻器的滑动触头由
向
滑动的过程中( )
A.电压表示数变化量的绝对值大于电压表
的示数变化量的绝对值
B.电压表示数变化量的绝对值与电压表
示数变化量的绝对值之和相等
C.电压表示数与电流表
示数的比值变小
D.电压表示数变化量的绝对值与电流表
示数变化量的绝对值的比值保持不变
21、(1)如图所示,一定质量的理想气体从状态a开始,经历过程①②③到达状态d.过程①中气体________(选填“放出”或“吸收”)了热量,状态d的压强________(选填“大于”或“小于”)状态b的压强.
(2)在第(1)问③状态变化过程中,1 mol该气体在c状态时的体积为10 L,在d状态时压强为c状态时压强的.求该气体在d状态时每立方米所含分子数.(已知阿伏加德罗常数NA=6.0×1023 mol-1,结果保留一位有效数字)
22、一辆速度为16m/s的汽车,从某时刻开始刹车,以2m/s2的加速度做匀减速运动,则2s后汽车的速度大小为___________m/s,经过10s后汽车离开刹车点的距离为___________m。
23、(1)关于多用电表,下列说法正确的一项是( )
A.用多用电表“×10”档测电阻R1、R2时,流过电表的电流分别为满偏电流的1/2、1/4,则R2=2R1
B.用多用电表测量电流、电压、电阻时,电流都是从红表笔流入电表
C.用多用电表测电阻时,选用不同档位,调试准确后,电表的内阻相同
D.多用电表使用前应先进行欧姆调零,再进行机械调零
(2)用右边的电路测电阻RX的阻值,已知RX约为1kΩ。电流表的量程为0-1mA、内阻r=100Ω(电流表的内阻是已知的);电压表的量程为0-1.5V、内阻约为1kΩ;电源电动势为3V、内阻不计;滑动变阻器的调节范围为0-100Ω。①请把变阻器画入电路图,将实验电路图补充完整。②若电流表示数为0.9mA、电压表示数为0.9V,则RX= Ω。
24、真空中有A、B两个点电荷,电量分别为QA=2×10-4C、QB=-2×10-5C,它们相距2m,则QB所受的电场力大小为__________N(k=9×109N·m2/C2),两个电荷的作用力是__________(填“吸引力或排斥力”)。
25、如图所示,一轻弹簧,左端固定在P点,右端与一小球(可视为质点)相连。把小球放置在光滑水平面上,轻弹簧和水平面平行。现在把小球沿水平方向向左缓慢移动到位置P1后释放,小球就左右做简谐运动。已知平衡位置在坐标原点O,水平向右为位移正方向,振幅为0.2m。设t =0时(从t =0开始计时)小球的位移为0. 1m;且此时小球的运动速度方向水平向右,t =1s时小球第一次到达位移为-0. 1m处,则:
(1)小球做简谐运动的周期为____s;
(2)从t=1s到t=2s的时间内,小球通过的路程_______m。
26、如图,电源电动势为E,内阻为r,两个完全相同的灯泡电阻不变。当滑片P从最大阻值滑到中点的过程中,电压表V的变化量为,电流表A的变化量为
,电压表
的变化量为
,电流表
的变化量为
,则
___________,
_______
(选填“>”、“=”或“<”)。(电表均为理想电表)
27、某兴趣小组为了测量金属丝的电阻率和电源的电动势与内阻,设计了如图甲、乙所示的实验电路,其中为待测电阻,定值电阻的阻值
已知。
(1)测量金属丝的电阻时,要求通过金属丝的电流从零开始连续变化,实验电路图应选_______(选填“甲”“乙”);
(2)使用螺旋测微器测量金属丝的直径如图丙所示,测量时,使用螺旋测微器的A、B、C三部分的先后顺序是_______;
(3)测量金属丝电阻时,选择正确的电路,按照规范操作,调节滑动变阻器,得到电压表V1、V2的示数的多组数值。作出
的图像,如图丁中直线
所示,斜率为
,则金属丝的电阻为_______(用
和
表示);
(4)测量电源的电动势与内阻时,选择正确的电路,按照规范操作,调节滑动变阻器,得到电压表V1、V2的示数的多组数值。作出
的图像,如图丁中直线
所示,图线中的
均已知,不考虑两电压表内阻的影响,则电源电动势
_______(用
或
)表示;
(5)在上述(3)、(4)实验中,接通电路前,滑动变阻器的滑片应分别置于_______(选填下列选项的序号),并简述你的理由_______。
A.最左端 最左端 B.最右端 最右端 C.最左端 最右端 D.最右端 最左端
28、如图所示,两足够大的水平面之间的距离为
,其间的区域存在场强大小为
、方向水平向右的匀强电场。一质量为
、电荷量为
的带电小球从
上方
处的
点以初速度
水平向右抛出。不计空气阻力,重力加速度
。求:
(1)小球射入电场时速度的大小和方向;
(2)小球离开电场时的动能。
29、如图所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3 kg,车长L=2.06 m,现有一质量m=1 kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:
(1)滑块从A到达B的过程中,滑块所受合力的冲量大小;
(2)车刚被锁定时,车右端距轨道B端的距离;
(3)从车开始运动到刚被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;
30、小物块以一定的初速度沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如图所示.取g=10 m/s2,空气阻力不计,可能用到的函数值:
,
,求:
(1)物块的初速度;
(2)物块与斜面之间的动摩擦因数;
(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).
31、斜面长度为4 m,一个尺寸可以忽略不计的滑块以不同的初速度v0从斜面顶端沿斜面下滑时,其下滑距离x与初速度二次方v02的关系图像(即xv02图像)如图所示。
(1)求滑块下滑的加速度大小;
(2)若滑块下滑的初速度为5.0 m/s,则滑块沿斜面下滑的时间为多少。
32、传统爆米花机,是先加热密封在气缸中的玉米粒,然后瞬间开盖使玉米粒爆开,形成香喷喷的爆米花。气缸密闭,开始时气缸内气体(可视为理想气体)的温度为室温,气体的压强为
,加热后气缸内气体的压强达到
即可开盖,此时气缸内气体的热力学温度为
(
为未知量),加热过程玉米粒的体积不变。
①求缸内气体的压强达到时的热力学温度
;
②若开盖后立即关闭盖子,此时缸内气体的热力学温度变为,气体的压强变为
,气缸内剩余爆米花的体积与开始时玉米粒的体积相同,求冷却到室温后气缸中气体的压强及剩余气体的质量与加热前气体的质量之比。