1、若,则( )
A.
B.
C.
D.
2、已知集合,集合
,以下命题正确的个数是( )
①;②
;③
;④
A.4 B.3 C.2 D.1
3、定义域为R的函数,若对任意两个不相等的实数
,都有
,则称函数为“H函数”,现给出如下函数:
①②
③
④
,
其中为“H函数”的有( )
A.①② B.③④ C.②③ D.①②③
4、设双曲线的左、右焦点为
,若双曲线右支上存在点P,使得
,
,
成等差数列,则该双曲线的离心率的取值范围为( )
A.
B.
C.
D.
5、若,
,则“
”是“
”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6、设复数,则
( )
A. B.
C.2 D.1
7、已知(
为虚数单位,
),则
的值为( )
A. -1 B. 1 C. 2 D. 3
8、设a,,则“
”是“
”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
9、已知,
,则
=( )
A. B.
C.
D.
10、设,使函数
的定义域是R,且为偶函数的所有
的值是( )
A.2
B.1,2
C.,2
D.,1,2
11、已知函数对任意两个不相等的实数
,
,都有不等式
,则
的取值范围是( )
A.
B.
C.
D.
12、已知函数 f (x) = ,且
.若 α − β 的最小值为
,则函数的单调递增区间为( )
A. B.
C. D.
13、若集合,则
A. B.
C. 2 D.
14、在底面为直角三角形的直三棱柱中,
,点
为四边形
对角线的交点,点
为平面
上一动点,则
的最小值为( )
A.8 B. C.
D.
15、集合,
,则
( )
A.
B.
C.
D.
16、已知的展开式的第4项等于
,则
的系数等于( )
A. B.
C.
D.
17、给出下列命题,其中不正确的命题为( )
①若样本数据的方差为3,则数据
的方差为6;
②回归方程为时,变量x与y具有负的线性相关关系;
③随机变量X服从正态分布,则
;
④甲同学所在的某校高三共有5003人,先剔除3人,再按简单随机抽样的方法抽取容量为200的一个样本,则甲被抽到的概率为.
A.①③④
B.③④
C.①②③
D.①②③④
18、已知,
,且
、
的夹角为
,则
( ).
A.
B.
C.
D.
19、设,则
的大小关系是( )
A. B.
C.
D.
20、设0≤x≤2π,且,则( )
A.0≤x≤π B.
C. D.
21、已知函数,则使
成立的实数
的集合为________.
22、在平面直角坐标系中,双曲线的一个顶点与抛物线
的焦点重合,则双曲线的两条渐近线的方程为__________________.
23、经过原点作函数
图象的切线,则切线方程为__________.
24、已知定义在上的偶函数
满足:
,且当
时,
单调递减,给出以下四个命题:
① ;
② 为函数
图象的一条对称轴;
③ 函数在
单调递增;
④ 若方程在
上的两根为
,
,则
.
上述命题中所有正确命题的序号为___________.
25、在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,
,则S的最大值为______.
26、展开式的二项式系数之和为256,则展开式中
的系数为 _________
27、已知椭圆的右焦点为F,点P是椭圆与x轴正半轴的交点,点Q是椭圆与y轴正半轴的交点,且
,
.直线l过圆
的圆心,并与椭圆相交于A,B两点,过点A作圆O的一条切线,与椭圆的另一个交点为C,且
.
(1)求椭圆的方程;
(2)求直线的斜率.
28、中,内角
,
,
所对边分别为
,
,
,且
.
(1)求函数的单调递增区间;
(2)若,且
,求
的面积.
29、在数列中,已知
.
(1)求的通项公式;
(2)求数列的前
项和.
30、已知函数.
(1)若,求函数
的单调区间;
(2)若函数在
上恒成立,求实数
的取值范围.
31、已知函数,
,若函数
在定义域上存在两个极值点
,
,且
.
(1)求实数的取值范围;
(2)证明:.
32、在锐角中,
、
、
分别为角
、
、
所对的边,且
.
(I)确定角的大小.
(II)若,且
的面积为
,求
的值.