1、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
2、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
3、如图所示,理想变压器原、副线圈接有额定电压均为20V的灯泡A和B,当输入u=220sin100πt(V)的交流电时,两灯泡均能正常发光,假设灯泡不会被烧坏,下列说法正确的是( )
A.原、副线圈匝数比为11:1
B.原、副线圈中电流的频率比为10:1
C.当滑动变阻器的滑片向上滑少许时,灯泡B变暗
D.当滑动变阻器的滑片向下滑少许时,灯泡A变亮
4、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
5、A、B两小球分别从图示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落点M水平距离为x,A球抛出点离地面高度为,与落点M水平距离为
,忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是( )
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球应先抛出的时间是
C.A、B两小球到达M点时速度方向一定相同
D.B球的初速度大小为
6、汽车自动控制刹车系统(ABS)的原理如图所示.铁质齿轮P与车轮同步转动,右端有一个绕有线圈的磁体(极性如图),M是一个电流检测器.当车轮带动齿轮P转动时,靠近线圈的铁齿被磁化,使通过线圈的磁通量增大,铁齿离开线圈时又使磁通量减小,从而能使线圈中产生感应电流,感应电流经电子装置放大后即能实现自动控制刹车.齿轮从图示位置开始转到下一个铁齿正对线圈的过程中,通过M的感应电流的方向是( )
A.总是从左向右
B.总是从右向左
C.先从右向左,然后从左向右
D.先从左向右,然后从右向左
7、工地上甲、乙两人用如图所示的方法将带挂钩的重物抬起。不可伸长的轻绳两端分别固定于刚性直杆上的A、B两点,轻绳长度大于A、B两点间的距离。现将挂钩挂在轻绳上,乙站直后将杆的一端搭在肩上并保持不动,甲蹲下后将杆的另一端搭在肩上,此时物体刚要离开地面,然后甲缓慢站起至站直。已知甲的身高比乙高,不计挂钩与绳之间的摩擦。在甲缓慢站起至站直的过程中,下列说法正确的是( )
A.轻绳的张力大小一直不变
B.轻绳的张力先变大后变小
C.轻绳的张力先变小后变大
D.轻绳对挂钩的作用力先变大后变小
8、如图所示,P、M、N为三个透明平板,M与P的夹角略小于N与P的夹角
,一束平行光垂直P的上表面入射,下列干涉条纹的图像可能正确的是( )
A.
B.
C.
D.
9、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
10、渔船上的声呐利用超声波来探测远方鱼群的方位。某渔船发出的一列沿轴传播的超声波在
时的波动图像如图甲所示,图乙为质点
的振动图像,则( )
A.该波沿轴正方向传播
B.若遇到3m的障碍物,该波能发生明显的衍射现象
C.该波的传播速率为0.25m/s
D.经过0.5s,质点沿波的传播方向移动2m
11、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
12、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
13、某平面区域内一静电场的等势线分布如图中虚线所示,一正电荷仅在电场力作用下由a运动至b,设a、b两点的电场强度分别为Ea、Eb,电势分别为a、
b,该电荷在a、b两点的速度分别为va、vb,电势能分别为Epa、Epb,则( )
A.Ea>Eb
B.a>
b
C.va>vb
D.Epa>Epb
14、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
15、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
16、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
17、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
18、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
19、如图所示的理想变压器电路,变压器原、副线圈的匝数可通过滑动触头P1、P2控制,R1为定值电阻,R2为滑动变阻器,L为灯泡。当原线圈所接的交变电压U降低后,灯泡L的亮度变暗,欲使灯泡L恢复到原来的亮度,下列措施可能正确的是( )
A.仅将滑动触头Pl缓慢地向上滑动
B.仅将滑动触头P2缓慢地向上滑动
C.仅将滑动变阻器的滑动触头P3缓慢地向下滑动
D.将滑动触头P2缓慢地向下滑动,同时P3缓慢地向下滑动
20、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
21、古代发明的点火器原理如图所示,用牛角做套筒,木质推杆前端粘着易燃艾绒。猛推推杆,艾绒即可点燃。对筒内封闭的气体,在此压缩过程中,气体温度____(填“升高”、“不变”或“降低”),压强_____(填“增大”、“不变”或“减小”)。
22、在阳光照射下,充满雾气的瀑布上方常常会出现美丽的彩虹.彩虹是太阳光射入球形水珠经折射、内反射,再折射后形成的.光的折射发生在两种不同介质的_______上,不同的单色光在同种均匀介质中__________不同.
23、如图,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P1、P2刚碰完时的共同速度v1=_____,P的最终速度v2=_____。
24、如图,三根轻绳一端分别系住A、B、C三个物体,它们的另一端分别通过光滑定滑轮系于O点,整个装置处于平衡状态时,Oa与竖直方向成37°,Ob处于水平状态。已知B物体的质量为m,则A物体的质量为___________;如果将左边的滑轮a缓慢水平向左移动距离s,最终整个装置仍处于平衡状态,重力加速度为g,则装置的机械能变化的大小为___________。(取sin37=0.6,cos37=0.8.)
25、如图,两根平行放置的长直导线a和b通有大小均为I、方向相反的电流,此时导线b产生的磁场在导线a处的磁感应强度大小为B,导线a受到的磁场力大小为F。当新加一个与纸面垂直的匀强磁场后,导线a受到的磁场力大小变为3F,则此时导线b受到的磁场力大小为___________,新加匀强磁场的磁感应强度大小为___________。
26、如图B、C为两列机械波的波源,它们在同种介质中传播,其振动表达式分别为和
,发出的波的传播方向如图中的虚线所示,2s末P点开始起振,它们传到P点时相遇,
,
,则这两列波的波长是___________cm,P点为振动___________(填“加强”或者“减弱”)
27、某同学在“用打点计时器测速度”的实验中,得到如图所示的纸带,该同学所用的交流电源的频率为50Hz。在纸带上从A点开始依次取了A、B、C、D、E五个计数点,且每相邻两个计数点间有3个点未画出,其中x1=7.05cm、x2=14.73cm、x3 =23.06cm、x4=32.03cm。
(1)相邻两个计数点间的时间间隔为___s。
(2)打D点时纸带的速度大小为___m/s,纸带运动的加速度大小为____m/s2(结果均保留三位有效数字)
28、如图所示,水平地面上有质量分别为1kg和4kg的物体A和B,两者与地面间的动摩擦因数均为0.5,非弹性轻绳连着一个轻质弹簧,弹簧劲度系数k=5N/m,绳一端固定且离B足够远,另一端跨过光滑轻质滑轮与A相连,滑轮与B相连,初始时,轻绳水平,若物体A在水平向右的恒力F=30N作用下开始运动了9m时,其速度达到最大,重力加速度g=10m/s2,求:
(1)当A移动多少距离时B开始运动;
(2)物体A运动4m时,物体B因摩擦而产生的热量;
(3)已知弹簧弹性势能EP=kx2,求A的最大速度大小,此时B的速度大小。
29、小明和弟弟到某游乐场体验一款游乐项目,如图所示,人坐在充气垫里,在加速装置上加速到后自O点水平飞出,充气垫刚好落在倾角为37°、固定在地面上的滑梯上一点A,并恰好沿该滑梯下滑,已知A到地面的竖直高度为1.95m,人和充气垫沿滑梯下滑到底端B在转角处无能量损失,随后继续沿水平面运动,直到充气垫带着人冲上静止在水平面上可自由移动的斜面体,斜面体质量为150kg,斜面体长度足够长,所有接触面均光滑,重力加速度
,求:
(1)人和充气垫在B点的速度大小;
(2)小明认为质量越大惯性越大,自己一定比弟弟最后到达斜面体的高度更高,若小明和充气垫的总质量为90kg,弟弟和充气垫的总质量为37.5kg,请计算小明和弟弟最后到达的高度,验证小明的想法是否正确。
30、如图所示,足够长的光滑平行金属导轨MN、PQ水平固定放置,导轨间距为L,导轨两端与定值 电阻R1和 R2相连,R1和R2的阻值均为R。磁感应强度的大小为B的匀强磁场方向竖直向上,有一个质量为m, 电阻也为R的导体棒ab与导轨垂直放置。现在导体棒ab的中点施加一个水平恒力F,让导体棒ab从静止开始向右运动。 经过时间t,运动达到稳定状态。导轨的电阻忽略不计,求:
(1)导体棒达到稳定时ab两点之间的电势差Uab;
(2)t时间内R1上产生的电热。
31、一种“光开关”的核心区如图所示,其中A、B是两个完全相同的、截面为等腰直角三角形的棱镜,直角边与矩形虚线框平行,两斜面平行,拉开一小段距离,在两棱镜之间可充入不同介质,以实现开关功能。单色光从A的左侧垂直于棱镜表面射入,若能通过B,则为“开”,否则为“关”。若棱镜对单色光的折射率,不充入介质,通过计算判断这种“光开关”能否实现“关”功能。
32、如图,光滑水平桌面上等间距分布着4个条形匀强磁场,磁场方向竖直向下,磁感应强度,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为
。桌面上现有一边长
、质量
、电阻
的单匝正方形线框abcd,在水平恒力
作用下由静止开始从左侧磁场边缘垂直进入磁场,在穿出第4个磁场区域过程中的某个位置开始做匀速直线运动,线框ab边始终平行于磁场边界,取
,不计空气阻力。求:
(1)线框刚好完全穿出第4个磁场区域时的速度;
(2)线框从开始运动到刚好完全穿出第4个磁场区域所产生的焦耳热;
(3)线框从开始运动到刚好完全穿出第4个磁场区域所用的时间。