1、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
2、如图为某燃气灶点火装置的原理图。转换器将直流电压转换为正弦交流电压,并加在一理想变压器的原线圈上,理想变压器的原、副线圈的匝数比为n1:n2=1:1000,电压表为交流电表。当变压器副线圈两端电压的瞬时值大于7070V时,就会在钢针和金属板间引发电火花进而点燃气体。此时,电压表的示数至少为( )
A.5
B.5000
C.10
D.7070
3、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
4、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
5、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
6、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
7、如图,电路中所有元件完好。当光照射光电管时,灵敏电流计指针没有偏转,其原因是( )
A.电源的电压太大
B.光照的时间太短
C.入射光的强度太强
D.入射光的频率太低
8、工地上甲、乙两人用如图所示的方法将带挂钩的重物抬起。不可伸长的轻绳两端分别固定于刚性直杆上的A、B两点,轻绳长度大于A、B两点间的距离。现将挂钩挂在轻绳上,乙站直后将杆的一端搭在肩上并保持不动,甲蹲下后将杆的另一端搭在肩上,此时物体刚要离开地面,然后甲缓慢站起至站直。已知甲的身高比乙高,不计挂钩与绳之间的摩擦。在甲缓慢站起至站直的过程中,下列说法正确的是( )
A.轻绳的张力大小一直不变
B.轻绳的张力先变大后变小
C.轻绳的张力先变小后变大
D.轻绳对挂钩的作用力先变大后变小
9、关于下列四幅图的说法正确的是( )
A.甲图为氢原子的电子云示意图,由图可知电子在核外运动有确定的轨道
B.乙图为原子核的比结合能示意图,由图可知原子核中的平均核子质量比
的要大
C.丙图为链式反应示意图,氢弹爆炸属于该种核反应
D.丁图为氡的衰变图像,由图可知1g氡经过3.8天后还剩0.25g
10、网课期间,有同学在家里用投影仪上课。投影仪可以吊装在墙上,如图所示。投影仪质量为m,重力加速度为g,则吊杆对投影仪的作用力( )
A.方向左斜向上
B.方向右斜向上
C.大小大于mg
D.大小等于mg
11、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
12、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
13、空间存在电场,沿电场方向建立直线坐标系Ox,使Ox正方向与电场强度E的正方向相同,如图所示为在Ox轴上各点的电场强度E随坐标x变化的规律。现将一正电子()自坐标原点O处由静止释放,已知正电子的带电量为e、正电子只受电场力,以下说法正确的是( )
A.该电场可能为某个点电荷形成的电场
B.坐标原点O与点间的电势差大小为
C.该正电子将做匀变速直线运动
D.该正电子到达点时的动能为
14、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
15、如图所示的理想变压器电路,变压器原、副线圈的匝数可通过滑动触头P1、P2控制,R1为定值电阻,R2为滑动变阻器,L为灯泡。当原线圈所接的交变电压U降低后,灯泡L的亮度变暗,欲使灯泡L恢复到原来的亮度,下列措施可能正确的是( )
A.仅将滑动触头Pl缓慢地向上滑动
B.仅将滑动触头P2缓慢地向上滑动
C.仅将滑动变阻器的滑动触头P3缓慢地向下滑动
D.将滑动触头P2缓慢地向下滑动,同时P3缓慢地向下滑动
16、如图所示,天花板上悬挂的电风扇绕竖直轴匀速转动,竖直轴的延长线与水平地板的交点为O,扇叶外侧边缘转动的半径为R,距水平地板的高度为h。若电风扇转动过程中,某时刻扇叶外侧边缘脱落一小碎片,小碎片落地点到O点的距离为L,重力加速度为g,不计空气阻力,则电风扇转动的角速度为( )
A.
B.
C.
D.
17、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
18、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
19、火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )
A.轨道周长之比为2∶3
B.线速度大小之比为
C.角速度大小之比为
D.向心加速度大小之比为9∶4
20、如图所示为速冻食品加工厂生产和包装饺子的一道工序。将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。关于饺子在水平传送带上的运动,下列说法正确的是( )
A.饺子一直做匀加速运动
B.传送带的速度越快,饺子的加速度越大
C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量
D.传送带多消耗的电能等于饺子增加的动能
21、如图一定质量的理想气体经历的两个过程,分别由压强一温度(p—t)图上的两条直线Ⅰ和Ⅱ表示,、
分别为两直线与纵轴交点的纵坐标;
是它们的延长线与横轴交点的横坐标,
℃;a、b为直线Ⅰ上的两点,c为直线Ⅱ上的一点,由图可知,气体从a状态沿直线Ⅰ变化到b状态,气体对外做功
___________;气体在b状态和c状态单位体积的分子数之比
___________。
22、图(a)电路中的电源为化学电池,a、b为电池的正、负极。已知化学电池的电极附近存在化学反应薄层,薄层内的正电荷在化学力(非静电力)的作用下从低电势移动到高电势处,沿电流方向形成图(b)所示的电势“跃升”(c、d之间为电源内阻)。闭合电键S,a、b两点之间电势差为,一电子从a点在电源内部经d、c移动至b点的过程中,非静电力做功为
;断开电键S,a、b两点之间电势差为
,电子从a点在电源内部经d、c移动至b点的过程中,非静电力做功为
,则
________________
,
________________
(均选填“大于”、“小于”或“等于”)。
23、一定量的理想气体从状态a开始,经历ab、bc、ca三个过程回到原状态,其p-T图象如图所示。___(选填“a”“b”或“c”)状态分子的平均动能最小,b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数_____(选填“相同”或“不同”),ca过程外界对气体做的功___(选填“大于”、“小于”或“等于”)气体放岀的热量。
24、在大气中,空气团竖直运动经过各气层的时间很短,因此,运动过程中空气团与周围空气热量交换极少,可看作绝热过程。潮湿空气团在山的迎风坡上升时,水汽凝结成云雨,到山顶后变得干燥,然后沿着背风坡下降时升温,气象上称这股干热的气流为焚风(大气压强随高度的增加而减小)。空气团在山的迎风坡上升时温度降低,原因是空气团___________(选填“对外放热”或“对外做功”);设空气团的内能U与温度T满足U=CT(C为一常数),空气团沿着背风坡下降过程中,外界对空气团做功为W,则此过程中空气团升高的温度ΔT=___________。
25、如图为医院给病人输液的部分装置,在输液过程中,瓶中上方A处气体的压强将随液面的下降而_______(选填“增大”“减小”或“不变”),B处药液的下滴速度将_________(选填“变快”“变慢”或“不变”).
26、自从1865年麦克斯韦预言电磁波的存在,人们的生活已经与电磁波密不可分,不同频率的电磁波被应用于生活的各个领域。例如:我国自主建立的北斗导航系统所使用的电磁波频率约为1561MHz,家用Wi-Fi所使用的电磁波频率约为5725MHz。则WiFi信号与北斗导航信号叠加时,__________(填“能”或“不能”)产生干涉现象:当Wi-Fi信号穿越墙壁进入另一个房间后,其波长_________,原因是__________。
27、某同学想将满偏电流为、内阻未知的电流表改装成电压表。
(1)利用如图所示的电路测量电流表G 的内阻:先闭合开关,调节滑动变阻器R的滑片,使电流表的指针满偏;再闭合开关
,保持滑动变阻器R的滑片不动,调节变阻器
,使电流表的指针半偏,读出此时
的阻值为
,则电流表内阻的测量值为__________
。
(2)将电流表G改装成量程为的电压表,需__________(填“串联”或“并联”)一个阻值为__________
的电阻。
28、圆形匀强磁场中,当带电粒子做匀速圆周运动的半径等于圆形磁场半径时,让粒子在磁场边界上的某点沿任意方向进入磁场都将以相同速度射出磁场,此种现象称为“磁发散”。在某平面坐标空间中,如图所示,第一象限中布满匀强电场,其方向与y轴正向成60°,大小为E1,而第二象限中布满场强大小为E2的匀强电场,另有一个半径为r的圆形匀强磁场,且在磁场边界P处有一粒子源可以射出质量为m、电荷量为q的带正电粒子,现该粒子源在该点切线的同侧180°角内向磁场一次性同时沿不同方向射入速度大小都为v的粒子,而且这些粒子进入磁场后都做匀速圆周运动均能在y轴正向进入第一象限,进入第一象限后都做类平抛运动,已知重力加速度为g,且。试求:
(1)匀强电场E2的大小;
(2)匀强磁场B的大小;
(3)P位置的坐标;
(4)最先到达x正半轴的粒子的运动时间。
29、如图所示,足够长水平光滑轨道连接一半径为R的光滑圆弧轨道,开始时A球静止,质量为m的球B在水平轨道上以某一初速度向右运动,经过半径为R的
光滑圆弧轨道射出。调整挡板位置,发现当B球与固定挡板发生垂直撞击时,撞击点与圆心位置等高,且B球碰撞挡板时没有机械能损失。在物体B碰撞完成返回圆弧轨道后马上撤去挡板,之后B球能与A球在水平轨道上发生不止一次弹性碰撞。则
(1)轨道右端与挡板间的距离x是多少?
(2)B球的初速度v0为多大?
(3)球A的质量M应该满足什么条件?
30、如图所示是某研究室设计的一种飞行时间质谱仪。该质谱仪的离子源能产生比荷不同但初速度均为0的带正电粒子,带电粒子经同一加速电场作用后垂直于磁场Ⅰ区域的左边界进入磁场。其中Ⅰ区域的磁场垂直纸面向里,Ⅱ区域的磁场垂直纸面向外,磁感应强度大小均为B,区域宽度均为d。粒子从Ⅱ区域的右边界飞出后进入一圆筒形真空无场源漂移管,检测器能测出粒子在漂移管中的飞行时间。已知加速电压为U,漂移管长度为L、直径为d,且轴线与离子源中心处于同一直线上,不计带电粒子重力和粒子间的相互作用。
(1)若带电粒子的质量为m,电荷量为q,求该粒子在磁场Ⅰ区域运动轨迹的半径;
(2)若测得某一粒子在漂移管中运动的时间为t,求该粒子的比荷为多少;
(3)求该装置能检测粒子的比荷的最大值。
31、如图所示,长板车停在光滑的水平面上,板长L=5m,质量为M=1kg,固定在水平面上两个光滑圆柱体,半径R=3.2m,两圆柱体间足够大。质量为m=3kg小滑块从左圆柱体的最高点由静止释放,滑块与长板车间的动摩擦因数为μ=0.2,平板车与圆柱体发生完全非弹性碰撞但不粘连,重力加速度g=10m/s2。求∶
(1)滑块第一次滑到左圆柱面底端时,滑块的速度v1;
(2)滑块第一次滑上右圆柱面体的最大高度h;
(3)最终物块会停在距长板车左端的距离。
32、压燃式四冲程柴油发动机具有动力大、油耗小、低排放等特点,被广泛应用于大型机车及各种汽车中,最早是由德国工程师R·狄塞尔于1892年设计,因此,其发动机工作过程也被称为“狄塞尔循环”,如图所示为理想的狄塞尔循环图像,其中
为绝热压缩过程,
为等压吸热过程,
为绝热膨胀过程,
为等容放热过程。现假定某汽缸中封闭一定质量的理想气体,进行“狄塞尔循环”,在初始状态a时,气体的体积
、压强
、温度
均为已知量,经过狄塞尔循环,由
,气体在状态b时的体积
、温度
,气体在状态c时的体积
。试求:
(1)气体在b状态时的压强和c状态的温度
。
(2)若过程中外界对气体做功为
,
过程中气体吸热为Q,
过程中气体对外界做功为
,求被封闭气体在从状态
过程中其内能变化量
。