1、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
2、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
3、如图所示,某健身者右手拉着抓把沿图示位置A水平缓慢移动到位置B,他始终保持静止不计绳子质量,忽略绳子和重物与所有构件间的摩擦,则重物下移过程( )
A.绳子的拉力逐渐增大
B.该健身者所受合力逐渐减小
C.该健身者对地面的压力不变
D.该健身者对地面的摩擦力逐渐减小
4、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
5、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
6、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
7、我们可以用“F=-F'”表示某一物理规律,该规律是( )
A.牛顿第一定律
B.牛顿第二定律
C.牛顿第三定律
D.万有引力定律
8、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
9、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
10、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
11、在垂直纸面的匀强磁场中,有不计重力的甲、乙两个带电粒子,在纸面内做匀速圆周运动,运动方向和轨迹示意如图.则下列说法中正确的是( )
A.甲、乙两粒子所带电荷种类不同
B.若甲、乙两粒子的动量大小相等,则甲粒子所带电荷量较大
C.若甲、乙两粒子所带电荷量及运动的速率均相等,则甲粒子的质量较大
D.该磁场方向一定是垂直纸面向里
12、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
13、某同学利用如图甲所示的装置,探究物块a上升的最大高度H与物块b距地面高度h的关系,忽略一切阻力及滑轮和细绳的质量,初始时物块a静止在地面上,物块b距地面的高度为h,细绳恰好绷直,现将物块b由静止释放,b碰到地面后不再反弹,测出物块a上升的最大高度为H,此后每次释放物块b时,物块a均静止在地面上,物块b着地后均不再反弹,改变细绳长度及物块b距地面的高度h,测量多组(H,h)的数值,然后做出H-h图像(如图乙所示),图像的斜率为k,已知物块a、b的质量分别为m1、m2,则以下给出的四项判断中正确的是( )
①物块a,b的质量之比 ②物块a、b的质量之比
③H-h图像的斜率为k取值范围是0<k<1 ④H-h图像的斜率为k取值范围是1<k<2
A.①③
B.②③
C.①④
D.②④
14、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
15、A、B两小球分别从图示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落点M水平距离为x,A球抛出点离地面高度为,与落点M水平距离为
,忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是( )
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球应先抛出的时间是
C.A、B两小球到达M点时速度方向一定相同
D.B球的初速度大小为
16、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
17、关于下列四幅图的说法正确的是( )
A.甲图为氢原子的电子云示意图,由图可知电子在核外运动有确定的轨道
B.乙图为原子核的比结合能示意图,由图可知原子核中的平均核子质量比
的要大
C.丙图为链式反应示意图,氢弹爆炸属于该种核反应
D.丁图为氡的衰变图像,由图可知1g氡经过3.8天后还剩0.25g
18、2021年4月,中国科学院近代物理研究所研究团队首次合成新核素铀(),并在重核区首次发现强的质子-中子相互作用导致α粒子形成的概率显著增强的现象,这有助于促进对原子核α衰变过程中α粒子预形成物理机制的理解。以下说法正确的是( )
A.铀核()发生核反应方程为
﹐是核裂变反应
B.与
的质量差等于衰变的质量亏损
C.产生的新核从高能级向低能级跃迁时,将发射出射线
D.新核的结合能大于铀核(
)的结合能
19、如图所示,两端封闭的导热U形管竖直放置在水平面上,其中的空气被水银隔成①、②两部分空气柱,以下说法正确的是( )
A.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①长度不变
B.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①变短
C.若周围环境温度升高,则空气柱①长度不变
D.若周围环境温度升高,则空气柱①长度变大
20、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
21、半径为R的玻璃半圆柱体,横截面如图所示,圆心为O。两条平行单色红光沿截面射向圆柱面,方向与底面垂直,光线1的入射点A为圆柱的顶点,光线2的入射点为B,。已知该玻璃对红光的折射率
。两条光线经柱面和底面折射后的交点与O点的距离
___________,若入射光改为单色蓝光,则距离d将___________(填“不变”、“变大”或“变小”)。
22、如图甲所示为一列在某介质中沿直线传播的简谐横波在0.8s时的波形图,图乙为介质中质点P的振动图像。根据两个图像分析,该列波传播方向为沿x轴______(填“正”或“负”)方向;若该波的传播速度为15m/s,该波的波长为______m,质点P平衡位置的x轴坐标为______m。
23、如图所示电路中,电源内阻不可忽略、电动势E=3V,R1=8Ω、R2=2Ω。闭合电键K1后,K2置于a处,电压表示数U1。将电键K2从a拨动到b,稳定后电压表示数U2,则U1________U2(选填“>”、“<”或“=”);若电源内阻r=20Ω,K2置于a处,滑动变阻器阻值逐渐增大时电源输出功率减小,随后将K2置于b处,变阻器阻值逐渐减小时电源输出功率减小,则滑动变阻器阻值的取值范围为________。
24、在“用双缝干涉测量光的波长”实验中:
已知双缝到光屏的距离,双缝间距
,单缝到双缝的距离
。某同学在测量时,转动手轮,在测量头目镜中先看到分划板中心刻线对准A亮纹的中心,手轮上的读数是4.077mm;然后继续转动手轮,使分划板中心刻线对准B亮纹的中心,如图所示,手轮上的读数是___________mm。则所测单色光的波长λ=___________m(保留2位有效数字)。
25、如图,将一个矩形金属线框折成框架abcdefa,置于倾角为37°的绝缘斜面上, 0.2m,abcf在斜面上,cdef在竖直面内,ab与ed边质量均为0.01kg,其余边质量不计,框架总电阻为0.5Ω。从t=0时刻起,沿斜面向上加一匀强磁场,磁感应强度随时间变化的关系为B=kt,其中k=0.5T/s,则线框中感应电流的大小为________A,t=_______s时ab边对斜面的压力恰好为零。
26、一列简谐横波沿水平向右传播,在波的传播方向上相距Δx=6m的a、b两质点(质点b在质点a的右侧)的振动情况如图所示。则该波的波速v=_______m/s;该波的最大波长λm=____m。
27、某同学在网上查得自己学校所在位置为东经119°北纬44°,当地重力加速度为9.70m/s2。该同学为了验证网上数据的准确性,利用图甲所示装置重新测量了当地重力加速度。实验中需要调整好仪器,接通连接打点计时器的电源,松开纸带,使重物下落,打点计时器会在纸带上打出一系列的点,在纸带上选取某点0为计数点,将此后连续打出的6个点依次标记为1、2、3、4、5、6记数点,所有测量数据及其标记符号如图乙所示。实验所用交流电频率为50Hz。打点计时器打计数点2时纸带的瞬时速度为__________m/s,当地的重力加速度为_________m/s2。(结果均保留三位有效数字)
28、某同学测量一厚度均匀透明介质的折射率。将矩形透明介质放在水平桌面上,上面平行介质表面固定一块屏幕。用一束激光以
的入射角从
点射向介质的上表面,结果在介质上方屏幕上出现两个较亮的光斑,它们之间的距离
,已知真空中光速
,求(结果可用根号表示)
(1)介质的折射率;
(2)激光在介质中的传播时间。
29、如图所示,竖直面内半径r=0.8m的1/4圆周的光滑曲面EM与粗糙水平面MN相切于M点,MN长x=6.0m.过M点的竖直虚线PQ及右侧空间存在水平向里的匀强磁场,B=5T,水平面的右端N处紧邻一半径R(R未知)的绝缘圆筒(图示为圆筒的横截面),圆筒内除了磁场外还有一竖直方向的匀强电场,圆筒上两小孔N、S和圆心O2在水平直径上.水平面上紧邻M点处有一质量m=0.1kg不带电的小球b,另有一个与b完全相同的、带电量q=–0.01C的小球a从曲面的顶端E处由静止释放,滑到M点处与静止的小球b正碰并粘在一起,碰后的瞬间给粘合体c一个水平推力F,粘合体以a=1m/s2加速度匀加速运动到N点,同时撤去水平推力,粘合体从N点进入圆筒后作竖直面内的圆周运动.不计空气阻力,小球a、b和粘合体c均视为质点,碰撞前后电荷总量保持不变,粘合体c与水平面间MN间的动摩擦因数μ=0.5.g取10m/s2.求:
(1)小球a与b碰前瞬间过曲面M点时对M点的压力;
(2)整个过程中水平力F对粘合体c的冲量;
(3)粘合体c从N点进入圆筒后,假设与筒壁碰后速度大小不变,方向反向,若粘合体c与筒壁发生3次碰撞后从S点射出,求圆筒的半径.(已知tan22.5º=)
30、如图所示,在y轴两侧有垂直于纸面向外的匀强磁场,其磁感应强度大小分别为和
,且
。坐标原点O处有一个质量为M、处于静止状态的中性粒子,分裂为两个带电粒子a和b,其中粒子a的电荷量为
,质量
(
可以取0~1的任意值)。分裂时释放的总能量为E,并且全部转化为两个粒子的动能。不计粒子重力和粒子之间的相互作用力,不计中性粒子分裂时间和质量亏损,不考虑相对论效应。设a粒子的速度沿x轴正方向,求:
(1)粒子a在磁场、
中运动的半径之比k;
(2)取多大时,粒子a在磁场
中运动的半径最大,以及此时的最大半径;
(3)若a粒子的速度沿右上方与x轴正方向夹角为,
取多大时,两粒子会在以后的运动过程中相遇。(已知若
,则取
)
31、某同学自行车轮胎的参数如图所示,轮胎容积V=3L。由于轮胎气门芯漏气,使胎内外气压相同。该同学换了气门芯后给轮胎充气,打气筒每次能将V0=1L的空气打入轮胎中,早晨打气时气温为,不计充气过程中轮胎容积和气体温度的变化,空气可看成理想气体,大气压
。若中午室外气温升到
,要保证自行车中午放置在室外时不爆胎(即不超过胎内气压允许的最大值),该同学早上最多能给轮胎充气多少次。
32、如图所示,有两个滑块A、B位于光滑水平面上,滑块A的质量为2kg,滑块B的质量为6kg,某时刻给滑块A一个向右的大小为4m/s的初速度,随后与静止的滑块发生碰撞,B左侧连接一个轻质弹簧,则在滑块A、B碰撞的过程中,求:
(1)轻质弹簧在碰撞过程中的最大弹性势能;
(2)碰撞过程中滑块的最大速度。