1、下列说法错误的是( )
A.根据F=可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力
B.力与力的作用时间的乘积叫做力的冲量,它反映了力的作用对时间的累积效应,是一个标量
C.动量定理的物理实质与牛顿第二定律是相同的,但有时用起来更方便
D.易碎品运输时要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力
2、2020年3月20日,电影《放射性物质》在伦敦首映,该片的主角—居里夫人是放射性元素钋()的发现者。已知钋(
)发生衰变时,会产生
粒子和原子核
,并放出
射线。下列分析正确的是( )
A.原子核的质子数为82,中子数为206
B.射线具有很强的穿透能力,可用来消除有害静电
C.由粒子所组成的射线具有很强的电离能力
D.地磁场能使射线发生偏转
3、如图所示的正四棱锥,底面为正方形
,其中
,a、b两点分别固定两个等量的异种点电荷,现将一带电荷量为
的正试探电荷从O点移到c点,此过程中电场力做功为
。选无穷远处的电势为零。则下列说法正确的是( )
A.a点固定的是负电荷
B.O点的电场强度方向平行于
C.c点的电势为
D.将电子由O点移动到d,电势能增加
4、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
5、如图所示,有一质量为m的物块分别与轻绳P和轻弹簧Q相连,其中轻绳P竖直,轻弹簧Q与竖直方向的夹角为,重力加速度大小为g,则下列说法正确的是( )
A.轻绳P的弹力大小可能小于mg
B.弹簧Q可能处于压缩状态
C.剪断轻绳瞬间,物块的加速度大小为g
D.剪断轻绳瞬间,物块的加速度大小为gsin
6、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
7、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
8、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
9、下列说法正确的是( )
A.液体分子的无规则运动称为布朗运动
B.两分子间距离减小,分子间的引力和斥力都增大
C.物体做加速运动,物体内分子的动能一定增大
D.物体对外做功,物体内能一定减小
10、如图所示,用一束太阳光去照射横截面为三角形的玻璃砖,在光屏上能观察到一条彩色光带。下列说法正确的是( )
A.玻璃对b光的折射率大
B.c光子比b光子的能量大
C.此现象是因为光在玻璃砖中发生全反射形成的
D.减小a光的入射角度,各种色光会在光屏上依次消失,最先消失的是b光
11、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
12、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
13、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
14、如图所示,甲、乙是规格相同的灯泡,接线柱a、b接电压为U的直流电源时,无论电源的正极与哪一个接线柱相连,甲灯均能正常发光,乙灯完全不亮.当a、b接电压有效值为U的交流电源时,甲灯发出微弱的光,乙灯能正常发光,则下列判断正确的是( )
A.x是电容器, y是电感线圈
B.x是电感线圈, y是电容器
C.x是二极管, y是电容器
D.x是电感线圈, y是二极管
15、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
16、我们可以用“F=-F'”表示某一物理规律,该规律是( )
A.牛顿第一定律
B.牛顿第二定律
C.牛顿第三定律
D.万有引力定律
17、A、B两小球分别从图示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落点M水平距离为x,A球抛出点离地面高度为,与落点M水平距离为
,忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是( )
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球应先抛出的时间是
C.A、B两小球到达M点时速度方向一定相同
D.B球的初速度大小为
18、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
19、如图所示,P、M、N为三个透明平板,M与P的夹角略小于N与P的夹角
,一束平行光垂直P的上表面入射,下列干涉条纹的图像可能正确的是( )
A.
B.
C.
D.
20、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
21、一列横波沿负x方向传播,波上有A、B、C三个质点,如图所示是某时刻的波形图,则三个质点中最先回到平衡位置是质点______(选填A、B、C字母),再过3/4周期时质点C的位移是_________m。
22、战绳训练是当下一种火热的健身方式,某次战绳训练中,一运动员晃动战绳一端使其上下振动(可视为简谐振动),战绳上因此形成一列横波。如图所示是战绳上A、B两质点的振动图像,形成的横波由A传向B,波长大于4.0m,A、B两质点在波的传播方向上的距离m。则这列波的波长为_______________m;波速为___________m/s。
23、如图为一端封闭的玻璃管,开口端竖直插入水银槽中,此时空气柱长度l=50cm,水银面高度差h=25cm,大气压强为75cmHg,温度为27℃。现缓慢下压玻璃管10cm,则管内空气柱长度将______(选填“变大”、“变小”或“不变”)。若要使空气柱长度恢复原长,则温度应该改变_______℃。
24、线段OB上存在静电场,OB上电场强度随空间变化规律如图所示。线段上有一点A,O、A、B三点的电场强度大小分别为E0、0、。将一带电荷量+q的粒子从O点由静止释放,只在电场力作用下运动,粒子到达B点时速度变为零。已知A、B两点距O点的距离分别为xA、xB,则xB=______xA,粒子在运动过程中最大动能为_________。
25、如图所示,一列简谐横波沿x轴传播,实线为t=0时的波形图,虚线为t=0.2s时的波形图。若波沿x轴正方向传播,则其最大周期为________s;若波沿x轴负方向传播,则其传播的最小速度为__________________m/s;若波速为25m/s,则t=0时刻P质点的运动方向为____________(选填“沿y轴正方向”或“沿y轴负方向”)。
26、在测定年代较近的湖泊沉积物形成年份时,常利用沉积物中半衰期较短的,其衰变方程为
。X是___________,简述
核内的核子怎样转化产生了X,写出该过程的核反应方程式:___________。
27、两个未知电阻A、B的阻值分别约为600 Ω和30 Ω,某同学为了能准确测出这两电阻的阻值,设计了如下实验:
Ⅰ.设计电路图如图所示,图中两电压表相同,量程为0~3 V;电流表量程为0~100 mA;电阻箱阻值范围0~999.9 Ω;滑动变阻器阻值范围0~20 Ω;电源电动势6.0 V。
Ⅱ.简单操作过程:
按电路图连接实物图。
将电阻箱阻值调至570 Ω,将滑动变阻器的滑片移至最左端。
闭合开关,向右移动滑动变阻器的滑片至离最右端较近位置。调节电阻箱阻值,直至两电压表示数相同。记下两电压表示数U,电流表示数I,电阻箱阻值R。
回答下列问题:
(1)用笔画代替导线,连接下面的实物图____________;
(2)由以上操作过程可知,能得到电阻准确值的是__________(填“”或“
”),其准确值为__________;
(3)在该同学的基础上,另一同学对该实验做了如下改动:把电流表由处移至
处,如图所示。重复操作过程,记下两电压表示数
,电流表示数
,电阻箱阻值
,可得电流表内阻为__________。
28、如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距,左端接有阻值
的电阻,一质量
,电阻
的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度
,棒在水平向右的外力作用下,由静止开始以
的加速度做匀加速运动,当棒的位移
时撤去外力,棒继续运动一段距离后停下来。导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求:
(1)棒在匀加速运动过程中,通过电阻的电荷量
;
(2)金属棒MN做匀加速直线运动所需外力随时间变化的表达式;
29、如图所示,水平细杆MN、CD,长度均为L,两杆间距离也为L,M、C两端与半圆形细杆相连,半圆形细杆与MN、CD在同一竖直平面内,且MN、CD恰为半圆弧在M、C两点处的切线。质量为m的带正电的小球P,电荷量为q,穿在细杆上,已知小球P与两水平细杆间的动摩擦因数μ=0.5,且与半圆形细杆之间的摩擦不计,小球P与细杆之间相互绝缘。若整个装置处在水平向右,场强大小为的匀强电场中,如图甲所示。
(1)小球P以大小为的水平向左的初速度从D端出发,求它沿杆滑到半圆形轨道最低点C时受到杆对它弹力的大小。
(2)要使得小球能沿半圆形细杆滑到MN水平杆上,则小球P从D端出发的初速度大小至少多大。
(3)撤去题中所述的电场,改为在MD、NC连线的交点O处固定一电荷量为Q的负电荷,如图乙所示,使小球P从D端出发沿杆滑动,滑到N点时速度恰好为零。(已知小球所受库仑力始终小于重力),求小球P从D端出发时的初速度大小。
30、如图所示,两平行光滑轨道MN和PQ竖直放置,间距l=0.5m,其中EG和FH为两段绝缘轨道,其余均为金属轨道,轨道末端NQ间连接一个自感系数L=0.01H的线圈,其直流电阻可以忽略.在ABCD、CDEF、GHIJ区域内存在垂直轨道平面的匀强磁场,磁感应强度大小B1=B2=B3=0.2T,方向如图,图中d=0.4m.两导体棒a、b通过轻质杆连接,总质量m=0.02kg,b棒电阻R=0.2Ω,a电阻不计;现将ab连杆系统从距离AB边高h处由静止释放,a棒匀速通过ABCD区域,最终a棒以1.6m/s的速度穿出EF边.导体棒与金属轨道接触良好.
(1)求h的值;
(2)求a棒从进入AB边到穿出EF边的总时间;
(3)若a棒通过GH边时轻质杆突然断裂,以该位置为原点,竖直向下为x轴,求a棒在向下运动过程中电流i与位移x的大小关系,已知线圈上的自感电动势为E=L,此过程中导体棒b仍在EFGH区域运动.
31、消毒是防止新冠肺炎传播的重要环节,肩背式手动消毒喷雾器原理如图所示,储液桶上端进气孔用细软管与带有单向阀门K1的打气筒相连,下端出水口用细软管与带阀门K2的喷头相连.已知储液桶容积V=16.0L,打气筒每打一次能将L的外界空气压入储液桶内.现向储液桶内注入
L的消毒液,拧紧桶盖和喷头开关K2,设大气压强
atm、喷雾器内外温度均为t=27℃,打气过程中温度保持不变。
(1)未打气时,储液桶内气体在标准状态下(气体压强atm、温度t0=0℃)的体积是多少?
(2)某次打气时,将打气筒里的气体全部充入储液桶,需对气体做W=40J的功,则喷雾器内的空气吸热还是放热?吸收或放出多少热量?
(3)某次消毒时,打气筒连续打气使储液桶内的气体压强增加到atm,停止打气.打开阀门K2,喷雾消毒后气体压强又降至
atm,上述过程温度不变。求打气筒打气的次数n和储液桶内剩余消毒液的体积V3。
32、如图甲所示,一竖直放置的导热气缸上端开口,气缸壁内有卡口和
,其中卡口
距缸底的高度为
。卡口之间有一活塞,其下方密封有一定质量的理想气体。已知活塞面积为S,厚度可忽略,不计活塞和气缸壁之间的摩擦。开始时活塞静止在卡口
上,气缸中气体经历如图乙所示的
、
、
三个过程。求:
(i)气体经历整个过程中对外做的功;
(ii)气体处于状态时,活塞与卡口间的弹力大小。