1、如图所示的正四棱锥,底面为正方形
,其中
,a、b两点分别固定两个等量的异种点电荷,现将一带电荷量为
的正试探电荷从O点移到c点,此过程中电场力做功为
。选无穷远处的电势为零。则下列说法正确的是( )
A.a点固定的是负电荷
B.O点的电场强度方向平行于
C.c点的电势为
D.将电子由O点移动到d,电势能增加
2、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
3、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
4、关于家用照明用的220V交流电,下列说法中不正确的是( )
A.该交流电的频率为50Hz
B.该交流电的周期是0.02s
C.该交流电1秒内方向改变50次
D.该交流电的电压有效值是220V
5、我国已成功发射的月球探测车上装有核电池提供动力。核电池是利用放射性同位素衰变放出载能粒子并将其能量转换为电能的装置。某核电池使用的核燃料为,一个静止的
发生一次α衰变生成一个新核,并放出一个γ光子。将该核反应放出的γ光子照射某金属,能放出最大动能为
的光电子。已知电子的质量为m,普朗克常量为h。则下列说法正确的是( )
A.新核的中子数为144
B.新核的比结合能小于核的比结合能
C.光电子的物质波的最大波长为
D.若不考虑γ光子的动量,α粒子的动能与新核的动能之比为117:2
6、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
7、如图所示,两端封闭的导热U形管竖直放置在水平面上,其中的空气被水银隔成①、②两部分空气柱,以下说法正确的是( )
A.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①长度不变
B.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①变短
C.若周围环境温度升高,则空气柱①长度不变
D.若周围环境温度升高,则空气柱①长度变大
8、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
9、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
10、如图所示为速冻食品加工厂生产和包装饺子的一道工序。将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。关于饺子在水平传送带上的运动,下列说法正确的是( )
A.饺子一直做匀加速运动
B.传送带的速度越快,饺子的加速度越大
C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量
D.传送带多消耗的电能等于饺子增加的动能
11、《流浪地球2》影片中,太空电梯高耸入云,在地表与太空间高速穿梭。太空电梯上升到某高度时,质量为2.5kg的物体重力为16N。已知地球半径为6371km,不考虑地球自转,则此时太空电梯距离地面的高度约为( )
A.1593km
B.3584km
C.7964km
D.9955km
12、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
13、下列说法正确的是( )
A.液体分子的无规则运动称为布朗运动
B.两分子间距离减小,分子间的引力和斥力都增大
C.物体做加速运动,物体内分子的动能一定增大
D.物体对外做功,物体内能一定减小
14、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
15、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
16、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
17、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
18、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
19、下列说法错误的是( )
A.根据F=可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力
B.力与力的作用时间的乘积叫做力的冲量,它反映了力的作用对时间的累积效应,是一个标量
C.动量定理的物理实质与牛顿第二定律是相同的,但有时用起来更方便
D.易碎品运输时要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力
20、如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则
A.杆对A环的支持力变大
B.B环对杆的摩擦力变小
C.杆对A环的力不变
D.与B环相连的细绳对书本的拉力变大
21、如图甲,两条无限长导线均通以电流强度大小为I的恒定电流,导线的直线部分和坐标轴趋于重合,弯曲部分是以坐标原点O为圆心,半径相同的一段圆弧。已知直线部分在原点O处不产生磁场,若图甲中O处的磁感应强度大小为B0,则图乙中O处磁感应强度大小为___________,方向___________。
22、如图,做“用单摆测重力加速度”的实验装置。
(1)实验前根据单摆周期公式推导出重力加速度的表达式,四位同学对表达式有不同的观点。
同学甲认为,T一定时,g与l成正比。
同学乙认为,l一定时,g与T2成正比。
同学丙认为,l变化时,T2是不变的。
同学丁认为,l变化时,l与T2比值是定值。
其中观点正确的是_________(选填“甲”、“乙”、“丙”或“丁”)
(2)实验时摆线与悬点连接处用铁架夹住摆线,用米尺测得摆线长度,用秒表测得摆球直径和50次全振动时间。下表是某次记录的一组数据,请填空。
次数 | 摆线长度(cm) | 摆球直径(cm) | 50次全振动时间(s) | 摆长L(cm) | 重力加速度g (m/s2) |
1 | 87.00 | 2.0 | 100.0 | ______ | ______ |
(3)某同学实验时,随意地将摆线绕在铁架上,其他操作同上,则其对测得重力加速度的结果_________(选填“有影响”或“无影响”),理由是_______________。
23、如图1所示两个相干波源S1、S2产生的波在同一均匀介质中相遇.图中实线表示波峰,虚线表示波谷,c和f分别为ae和bd的中点,则:
(1)在a、b、c、d、e、f六点中,振动加强的点是_____.振动减弱的点是_____.
(2)若两振源S1和S2振幅不相同,此时位移为零的点是______.
(3)在图2中画出此时刻ace连线上,以a为原点的一列完整波形,标出e点_______.
24、东京奥运会上,我国运动员在乒乓球项目中荣获4金3银的好成绩。如图所示,某次训练时乒乓球发球机正对竖直墙面水平发射乒乓球。设有两个质量相同的乒乓球a和b以不同的速度水平射出,碰到墙面时下落的高度之比为4:9,不考虑空气阻力和球的旋转,则乒兵球a和b水平射出时的初速度之比va:vb = ______,乒乓球a和b碰到墙面时的速度与水平方向的夹角之比tanθ:tanβ = _______。
25、下列说法中正确的是_____
A、光电效应进一步证实了光的波动特性
B、为了解释黑体辐射规律,普朗克提出了电磁辐射的能量是量子化的
C、经典物理学不能解释原子的稳定性和原子光谱的分立特性
D、天然放射元素衰变的快慢与化学、物理状态有关
26、平静的湖面上传播着一列水面波(视为横波)。在波的传播方向上相距4.5的两处分别放上甲、乙小木块,两木块随波上下运动。当甲运动到最低点时,乙恰好运动到最高点,且此时两木块之间只有一个波峰,则该水面波的波长为___________m;测得从第1个波峰到第11个波峰到达甲木块的时间间隔为20s,则该水面波的波速为___________m/s。
27、如图(1)为“用DIS研究加速度和力的关系”的实验装置。
(1)实验时有以下一些步骤,先后顺序是________(填写字母标号)
A.点击“选择区域”,计算机自动计算出加速度值;
B.保持小车、配重片和发射器总质量不变,不断增加钩码的质量,重复实验;
C.点击“开始记录”并释放小车,当小车到达终点时,点击“停止记录”,得到v-t图像。
(2)若测得小车、配重片和发射器的总质量为360g,若把钩码的重力做为小车受的合外力,则跨过滑轮的细绳下悬挂的钩码质量范围最适合用________;
A.1g~25g B.100g~200g C.180g~360g D.大于360g
(3)当小车总质量一定,改变钩码质量重复实验,释放小车的位置________(填写“必须相同”或“可以不同”)。
(4)实验中某小组获得如图(2)所示的图线,在进行“选择区域”操作记录小车加速度时,在选择AB段、BC段和AC段中,你认为选择哪段获得的加速度较精确?答:________。
28、如图甲所示,平台ON上有一轻质弹簧,其左端固定于竖直挡板上,右端与质量、可看作质点的物块A相接触(不粘连),OP段粗糙且长度等于弹簧原长。PN段光滑,上面有静止的小滑块B、C,
,
,滑块B、C之间有一段轻弹簧刚好处于原长,B与轻弹簧连接,滑块C未连接弹簧,两滑块离N点足够远。物块A开始静止于P点,现对物块施加一个水平向左的外力F,大小随位移x变化关系如图乙所示。物块A向左运动x=0.40m后撤去外力F,此后物块A向右运动到离开P点时的速度为v0=4m/s,A与B碰撞后粘合在一起,碰撞时间极短。滑块C脱离弹簧后滑上倾角θ=37°的传送带,并刚好到达传送带顶端。已知滑块C与传送带之间的动摩擦因数μ=0.50,水平面MN右端N处与倾斜传送带理想连接,传送带以恒定速度v=1m/s顺时针转动,重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8。 求:
(1)物块A与物块B碰撞前克服摩擦力做功为多少;
(2)滑块C 刚滑上传送带时的速度;
(3)物块C 滑上传送带到达顶端的过程中,滑块C与传送带之间摩擦产生的热量。
29、如图α粒子源可以每秒发射出个α粒子,其初速度均为
,进入电压为
的加速电场,从电场中射出后与静止在反应区A点的铍核
发生核反应,两个反应产物垂直于边界EF飞入探测区,探测区有一圆形磁场和粒子探测器,圆形磁场半径为
,其内存在磁感应强度为
的匀强磁场,圆形磁场边界与EF相切,探测器与EF平行且距圆心距离为
。实验中根据碰撞点的位置便可分析核反应的生成物。为简化模型,假设每个α粒子均可与铍核发生核反应,实验中探测器上有两个点(P点和Q点)持续受到撞击,点A、O、P在一直线上,且
,打在P点粒子50%穿透探测器,50%被探测器吸收,其中穿透的粒子能量损失75%,打在Q点的粒子全部被吸收。已知质子和中子的质量均为
,原子核的质量为核子的总质量,质子电量为
,不计粒子间相互作用(核反应过程除外)求:
(1)α粒子射出加速电场后的速度大小;
(2)写出核反应方程,判断打在P、Q点的分别是什么粒子,计算其速度大小;
(3)探测器上P点每秒受到的撞击力大小。
30、如图甲所示,倾角θ=37°的粗糙斜面固定在水平面上,斜面上端固定一轻质弹簧,下端与一足够长的水平面平滑相连,水平面右端放置一个质量M=7.0kg的滑块,开始时弹箦被一质量m=1.0kg的小物块(可视为质点)压缩,小物块与弹簧只接触不相连,此时小物块距斜面底端的距离=4.0m。t=0时释放小物块,图乙为小物块在斜面上运动的加速度a随时间t变化的部分图象,小物块到达水平面并与滑块发生弹性碰撞(碰撞时间极短)。已知弹簧的劲度系数k=75N/m,弹性势能的表达式为
,x为弹簧形变量,所有接触面之间动摩擦因数均相同。g取10m/s2,sin37°=0.6,cos37°=0.8。最大静摩擦力等于滑动摩擦力。求:
(1)斜面与小物块之间的动摩擦因数μ;
(2)小物块到达斜面底端时的速度大小;
(3)滑块运动的路程s。
31、如图,容积为的密闭导热氮气瓶,通过单向阀门
(气体只能进入容器,不能流出容器)与一充气装置相连接。开始时气瓶存放在冷库内,瓶内气体的压强为
、温度与冷库内温度相同,现将气瓶移至冷库外,稳定后瓶内气体压强变为
,再用充气装置向瓶内缓慢充入氮气共45次。已知每次充入的气体压强为
、体积为
、温度为
。设冷库外的环境温度保持
不变。求:
(1)冷库内的温度;
(2)充气结束后,瓶内气体压强。
32、绝热的活塞与汽缸之间封闭一定质量的理想气体,汽缸开口向上置于水平面上,活塞与汽缸壁之间无摩擦,缸内气体的内能Up=72J,如图甲所示。已知活塞面积S=5×10-4m2,其质量为m=1kg,大气压强p0=1.0×105Pa,重力加速度g=10m/s2如果通过电热丝给封闭气体缓慢加热,活塞由原来的P位置移动到Q位置,此过程封闭气体的V-T图像如图乙所示,且知气体内能与热力学温度成正比。求:
(1)封闭气体最后的体积;
(2)封闭气体吸收的热量。